现在每天产生的数据都是海量的,这些数据中既有高质量的也有很多垃圾,如何从这些海量的数据中洞察出这些数据的内在联系是我们机器学习的核心内容。如果光把数据丢在大家的面前,咱们肯定是无感的,无法获取这些数据的意义。为了能够更加直观的了解这些数据的一些特征,例如数据的分布情况,数据的趋势和走势,数据之间 ...
一 可视化方法 条形图 饼图 箱线图 箱型图 气泡图 直方图 核密度估计 KDE 图 线面图 网络图 散点图 树状图 小提琴图 方形图 三维图 二 交互式工具 Ipython Ipython notebook Plotly 三 Python IDE类型 PyCharm,指定了基于Java Swing的用户界面 PyDev,基于SWT的用户界面 适用Eclipse IEP Interactive E ...
2018-03-28 18:19 0 1836 推荐指数:
现在每天产生的数据都是海量的,这些数据中既有高质量的也有很多垃圾,如何从这些海量的数据中洞察出这些数据的内在联系是我们机器学习的核心内容。如果光把数据丢在大家的面前,咱们肯定是无感的,无法获取这些数据的意义。为了能够更加直观的了解这些数据的一些特征,例如数据的分布情况,数据的趋势和走势,数据之间 ...
今天看到这篇文章里面提到如何选择模型,觉得非常好,单独写在这里。 更多的机器学习实战可以看这篇文章:http://www.cnblogs.com/charlesblc/p/6159187.html 另外关于机器学习与数据挖掘的区别, 参考这篇文章:https ...
谈谈数据挖掘和机器学习 又是好长时间没有写博客了,最近周末事情太多,明天劳动节终于可以让我们劳动人民休息一天了。首先声明的是本人并非数据挖掘和机器学习的高手,只是作为业余兴趣刚刚开始研究,据我所知好多朋友也和我一样对这方面的东西感兴趣,个人认为机器人技术是未来发展的方向。虽然我的专业是软件开发 ...
一、数据挖掘任务 数据挖掘常见的六大任务: 1.分类问题 2.聚类问题 3.回归问题 4.关联问题 5.序列问题 6.异常检测 二、数据挖掘流程 CRISP-DM:跨行业数据挖掘标准流程 ...
李航的《统计学习方法》 这本书开篇第一章写得特别好,各个模型的算法推导也比较全,基本涵盖了比较经典的判别模型和生成模型。 《机器学习实战》 这本书代码和应用特别多,了解python用法和机器学习算法的代码实现非常方便。 项亮的《推荐系统实践》 这本书个人感觉偏理论一点,伪代码 ...
背景介绍 从学sklearn时,除了算法的坎要过,还得学习matplotlib可视化,对我的实践应用而言,可视化更重要一些,然而matplotlib的易用性和美观性确实不敢恭维。陆续使用过plotly、seaborn,最终定格在了Bokeh,因为它可以与Flask完美的结合,数据看板的开发 ...
强烈推荐:《机器学习》 (西瓜书) 入门读物: 《深入浅出数据分析》 这书挺简单的,基本的内容都涉及了,说得也比较清楚,最后谈到了R是大加分。难易程度:非常易。 《啤酒与尿布》 通过案例来说事情,而且是最经典的例子。难易程度:非常易。 《数据之美》 一本介绍性的书籍,每章都解决一个具体的问题 ...
1. 数据挖掘与机器学习开源框架 1.1 框架概述 1.1.1 AForge.NET AForge.NET是一个专门为开发者和研究者基于C#框架设计的,他包括计算机视觉与人工智能,图像处理,神经网络,遗传算法,机器学习,模糊系统,机器人控制等领域。这个框架由一系列的类库组成。主要 ...