如果本文观点有不对的地方,欢迎指正! author:佟学强 开场白:对于事物的理解,一般分3个层次:①看山是山,看水是水②看山不是山,看水不是水③看山是山,看水是水。对AI和nlp的理解,同样 ...
这篇文章,专门讲语义相似度问题。 先看场景: scene 一 :用户通过大众点评,线上约了餐馆,就餐后在上面发表了很多评论,评论中涉及了大量的餐馆的问题,比如菜品质量,酒店卫生,服务等等。现在需要抽取之中的要点,然后反馈给商家。 scene 二 :KB QA的两个问题: 获取question的语义表示 把语义表示转换成知识图谱的能够理解的语言逻辑形式。无论是核心推导链还是向量建模,核心都是ques ...
2018-05-01 12:10 0 2258 推荐指数:
如果本文观点有不对的地方,欢迎指正! author:佟学强 开场白:对于事物的理解,一般分3个层次:①看山是山,看水是水②看山不是山,看水不是水③看山是山,看水是水。对AI和nlp的理解,同样 ...
1,前言 语义相似度计算是信息检索,自动问答中常用的技术。语义相似度计算通常可以分为表示型和交互型两种类型,表示型模型如DSSM,孪生网络,这类模型可以离线计算doc的编码,在线上运行时只需要编码query,效率很高,但是精度不如交互型模型,而交互型模型需要在线编码query和doc,当需要 ...
分,侵删) 一、背景 二、基本概念 三、语义相似度计算方法 四、参考文献 一、 ...
知道原理的同学这部分可以略过直接看实践部分 什么是TD-IDF? 构造文档模型 我们这里使用空间向量模型来数据化文档内容:向量空间模型中将文档表达为一个矢量。 用特征向量(T1,W1;T2,W2;T3, W3;…;Tn,Wn)表示文档。 Ti是词条项,Wi是Ti在文档中的重要程度 ...
参考:http://techblog.youdao.com/?p=915#LinkTarget_699word2vector是一个把词转换成词向量的一个程序,能够把词映射到K维向量空间,甚至词与词之间 的向量操作还能和语义相对应。如果换个思路,把词当做feature,那么word2vec ...
在NLP领域,语义相似度的计算一直是个难题:搜索场景下query和Doc的语义相似度、feeds场景下Doc和Doc的语义相似度、机器翻译场景下A句子和B句子的语义相似度等等。本文通过介绍DSSM、CNN-DSSM、LSTM-DSSM等深度学习模型在计算语义相似度上的应用,希望给读者带来帮助 ...
1. BERT 语义相似度 BERT的全称是Bidirectional Encoder Representation from Transformers,是Google2018年提出的预训练模型,即双向Transformer的Encoder,因为decoder是不能获要预测的信息的。模型的主要 ...
参考文档:https://blog.csdn.net/xiexf189/article/details/79092629 ...