原文:回归与梯度下降法及实现原理

回归与梯度下降 回归在数学上来说是给定一个点集,能够用一条曲线去拟合之,如果这个曲线是一条直线,那就被称为线性回归,如果曲线是一条二次曲线,就被称为二次回归,回归还有很多的变种,如locally weighted回归,logistic回归,等等,这个将在后面去讲。 用一个很简单的例子来说明回归,这个例子来自很多的地方,也在很多的open source的软件中看到,比如说weka。大概就是,做一个房 ...

2018-03-21 22:01 8 3792 推荐指数:

查看详情

线性回归梯度下降法[一]——原理实现

看了coursea的机器学习课,知道了梯度下降法。一开始只是对其做了下简单的了解。随着内容的深入,发现梯度下降法在很多算法中都用的到,除了之前看到的用来处理线性模型,还有BP神经网络等。于是就有了这篇文章。 本文主要讲了梯度下降法的两种迭代思路,随机梯度下降(Stochastic ...

Tue Dec 13 00:23:00 CST 2016 5 11092
梯度下降法原理与python实现

梯度下降法(Gradient descent)是一个一阶最优化算法,通常也称为最速下降法。 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索。如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部极大值点;这个过程 ...

Thu Feb 14 01:15:00 CST 2019 0 1127
梯度下降法及其实现

本文将从一个下山的场景开始,先提出梯度下降算法的基本思想,进而从数学上解释梯度下降算法的原理,最后实现一个简单的梯度下降算法的实例! 梯度下降的场景假设 梯度下降法的基本思想可以类比是一个下山的过程。可以假设一个场景:一个人上山旅游,天黑了,需要下山(到达山谷 ...

Sat Jul 13 01:56:00 CST 2019 0 1506
sklearn中实现随机梯度下降法(多元线性回归

sklearn中实现随机梯度下降法 随机梯度下降法是一种根据模拟退火的原理对损失函数进行最小化的一种计算方式,在sklearn中主要用于多元线性回归算法中,是一种比较高效的最优化方法,其中的梯度下降系数(即学习率eta)随着遍历过程的进行在不断地减小。另外,在运用随机梯度下降法之前需要利用 ...

Wed Aug 07 22:11:00 CST 2019 0 1482
Python实现——一元线性回归(梯度下降法)

2019/3/25 一元线性回归——梯度下降/最小二乘法又名:一两位小数点的悲剧 感觉这个才是真正的重头戏,毕竟前两者都是更倾向于直接使用公式,而不是让计算机一步步去接近真相,而这个梯度下降就不一样了,计算机虽然还是跟从现有语句/公式,但是在不断尝试中一步步接近目的地。 简单来说,梯度下降的目的 ...

Tue Apr 02 06:17:00 CST 2019 0 1230
梯度下降法原理及小结

  在机器学习的核心内容就是把数据喂给一个人工设计的模型,然后让模型自动的“学习”,从而优化模型自身的各种参数,最终使得在某一组参数下该模型能够最佳的匹配该学习任务。那么这个“学习”的过程就是机器学习算法的关键。梯度下降法就是实现该“学习”过程的一种最常见的方式,尤其是在深度学习(神经网络)模型中 ...

Thu Dec 24 07:31:00 CST 2020 0 1465
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM