这半年有几次机缘巧合的机会来给其他人科普强化学习的基本概念,我总体上是分成两部分来讲的:第一部分是强化学习背景和常用概念介绍;第二部分是 DQN、DDPG、PPO、SAC 四个算法的比较。这里分享一下第二部分的 slides。 此外我 ...
介绍 目前,对于全球科学家而言, 如何去学习一种新技能 成为了一个最基本的研究问题。为什么要解决这个问题的初衷是显而易见的,如果我们理解了这个问题,那么我们可以使人类做一些我们以前可能没有想到的事。或者,我们可以训练去做更多的 人类 工作,常遭一个真正的人工智能时代。 虽然,对于上述问题,我们目前还没有一个完整的答案去解释,但是有一些事情是可以理解的。先不考虑技能的学习,我们首先需要与环境进行交互 ...
2018-03-18 22:32 7 6217 推荐指数:
这半年有几次机缘巧合的机会来给其他人科普强化学习的基本概念,我总体上是分成两部分来讲的:第一部分是强化学习背景和常用概念介绍;第二部分是 DQN、DDPG、PPO、SAC 四个算法的比较。这里分享一下第二部分的 slides。 此外我 ...
花了一天时间大致了解了强化学习一些经典算法,总结成如下笔记。笔记中出现不少流程图,不是我自己画的都标了出处。 铺垫 1. Bellman方程 在介绍强化学习算法之前先介绍一个比较重要的概念,就是Bellman方程,该方程表示动作价值函数,即在某一个状态下,计算出每种动作所对应 ...
机器学习分类: 强化学习是机器学习中的一个领域,强调如何基于环境而行动,以取得最大化的预期利益 强化学习基础概念:Agent :主体,与环境交互的对象,动作的行使者Environment : 环境, 通常被规范为马尔科夫决策过程(MDP)State : 环境状态的集合Action ...
强化学习总结 强化学习的故事 强化学习是学习一个最优策略(policy),可以让本体(agent)在特定环境(environment)中,根据当前的状态(state),做出行动(action),从而获得最大回报(G or return)。 有限马尔卡夫决策过程 马尔卡夫决策过程理论 ...
强化学习: 强化学习作为一门灵感来源于心理学中的行为主义理论的学科,其内容涉及 概率论、统计学、逼近论、凸分析、计算复杂性理论、运筹学 等多学科知识,难度之大,门槛之高,导致其发展速度特别缓慢。 一种解释: 人的一生其实都是不断在强化学习,当你有个动作(action)在某个状态 ...
1. 定义 机器学习算法可以分为3种:有监督学习(Supervised Learning)、无监督学习(Unsupervised Learning)和强化学习(Reinforcement Learning)。强化学习(Reinforcement Learning, RL),又称再励学习、评价学习 ...
Reinforcement learning 是机器学习里面的一个分支,特别善於控制一只能够在某个环境下 自主行动 的个体 (autonomous agent),透过和 环境 之间的互动,例如 sensory perception 和 rewards,而不断改进它的 行为 。 听到强化学习 ...
强化学习从入门到放弃 目录 强化学习从入门到放弃 杂谈 MDP MP MRP Bellman Equation MDP ...