1. 导入各种包 2. 准备数据 使用和mnist很像的FashionMNIST数据集,使用Gluon下载 用于显示图像和标签 看下数据集长啥样 3. 精度计算函数 4. 定义网络 4.1 自己定义的层 Gluon模型转到Symbol下只能 ...
为什么要开发Gluon的接口 在MXNet中我们可以通过Sybmol模块来定义神经网络,并组通过Module模块提供的一些上层API来简化整个训练过程。那MXNet为什么还要重新开发一套Python的API呢,是否是重复造轮子呢 答案是否定的,Gluon主要是学习了Keras Pytorch等框架的优点,支持动态图 Imperative 编程,更加灵活且方便调试。而原来MXNet基于Symbol来 ...
2018-03-16 17:41 0 1868 推荐指数:
1. 导入各种包 2. 准备数据 使用和mnist很像的FashionMNIST数据集,使用Gluon下载 用于显示图像和标签 看下数据集长啥样 3. 精度计算函数 4. 定义网络 4.1 自己定义的层 Gluon模型转到Symbol下只能 ...
上节用了Sequential类来构造模型。这里我们另外一种基于Block类的模型构造方法,它让构造模型更加灵活,也将让你能更好的理解Sequential的运行机制。 回顾: 序列模型生成 层填充 初始化模型参数 net = gluon ...
MXNet中含有init包,它包含了多种模型初始化方法。 from mxnet import init, nd from mxnet.gluon import nn net = nn.Sequential() net.add(nn.Dense(256, activation='relu ...
参考文献 莫凡系列课程视频 增强学习入门之Q-Learning 关于增强学习的基本知识可以参考第二个链接,讲的挺有意思的。DQN的东西可以看第一个链接相关视频。课程中实现了Tensorflow和pytorch的示例代码。本文主要是改写成了gluon实现 Q-learning的算法流程 DQN ...
一、符号式编程 1、命令式编程和符号式编程 命令式: def add(a, b): return a + b def fancy_func(a, b, c, d): e ...
在这篇文章中没有直接使用MXNet官方提供的docker image,而是从一个干净的nvidia/cuda镜像开始,一步一步部署mxnet需要的相关软件环境,这样做是为了更加细致的了解mxnet的运行环境,方便后续我们更加灵活的去修改相关的配置。 1. 通过docker创建干净的系统环境 ...
一、不含参数层 通过继承Block自定义了一个将输入减掉均值的层:CenteredLayer类,并将层的计算放在forward函数里, from mxnet import nd, gluon from mxnet.gluon import nn class CenteredLayer ...
哇塞,好久么有跟进mxnet啦,python改版了好多好多啊,突然发现C++用起来才是最爽的. 贴一个mxnet中的C++Example中的mlp网络和实现,感觉和python对接毫无违和感。真是一级棒呐. 结果: poch 18900 Accuracy ...