学习了那么多机器学习模型,一切都是为了实践,动手自己写写这些模型的实现对自己很有帮助的,坚持,共勉。本文主要致力于总结贝叶斯实战中程序代码的实现(python)及朴素贝叶斯模型原理的总结。python的numpy包简化了很多计算,另外本人推荐使用pandas做数据统计。 一 引言 ...
数据链接 垃圾短信分类 解析 设一个点 x,y ,对 x,y 进行分类 , ,我们可以设每个点分别属于两个类别的概率: 如果p x,y gt p x,y ,那么类别为 如果p x,y lt p x,y ,那么类别为 由贝叶斯概率我们有 p c x,y frac p x,y c p c p x,y dots 对于二分类可见 p rightarrow p x,y p rightarrow p x,y ...
2018-03-16 10:46 0 1130 推荐指数:
学习了那么多机器学习模型,一切都是为了实践,动手自己写写这些模型的实现对自己很有帮助的,坚持,共勉。本文主要致力于总结贝叶斯实战中程序代码的实现(python)及朴素贝叶斯模型原理的总结。python的numpy包简化了很多计算,另外本人推荐使用pandas做数据统计。 一 引言 ...
Naive Bayes-朴素贝叶斯 Bayes’ theorem(贝叶斯法则) 在概率论和统计学中,Bayes’ theorem(贝叶斯法则)根据事件的先验知识描述事件的概率。贝叶斯法则表达式如下所示 P(A|B) – 在事件B下事件A发生的条件概率 P(B|A) – 在事件A下事件B发生 ...
一、概率基础 概率定义:概率定义为一件事情发生的可能性,例如,随机抛硬币,正面朝上的概率。 联合概率:包含多个条件,且所有条 ...
很多人都听说过贝叶斯原理,在哪听说过?基本上是在学概率统计的时候知道的。有些人可能会说,我记不住这些概率论的公式,没关系,我尽量用通俗易懂的语言进行讲解。 /*请尊重作者劳动成果,转载请标明原文链接:*/ /* https://www.cnblogs.com/jpcflyer/p ...
://www.cnblogs.com/hellcat/p/7195843.html 朴素贝叶斯分类是一种十分简单的分类算 ...
本文始发于个人公众号:TechFlow 上一篇文章当中我们介绍了朴素贝叶斯模型的基本原理。 朴素贝叶斯的核心本质是假设样本当中的变量服从某个分布,从而利用条件概率计算出样本属于某个类别的概率。一般来说一个样本往往会含有许多特征,这些特征之间很有可能是有相关性的。为了简化模型,朴素贝叶斯 ...
一,引言 前两章的KNN分类算法和决策树分类算法最终都是预测出实例的确定的分类结果,但是,有时候分类器会产生错误结果;本章要学的朴素贝叶斯分类算法则是给出一个最优的猜测结果,同时给出猜测的概率估计值。 1 准备知识:条件概率公式 相信学过概率论的同学对于概率论绝对不会陌生,如果一时觉得 ...
秒懂机器学习---朴素贝叶斯进行垃圾邮件分类实战 一、总结 一句话总结: 没必要一次学很多个算法,不然,其实真的一个也不懂,要一个一个搞懂了再往下学 如何讲解这个问题:实例+人话:朴素贝叶斯( P(结果|关键词1,关键词2...) = P(关键词1,关键词2...|结果)*P(结果)/P ...