# -*- coding: utf-8 -*- """ ##################################################################### ...
# -*- coding: utf-8 -*- """ ##################################################################### ...
1.一般来说我们可以使用xgboost.get_score去画图,但是如果字段名字有中文时,是会报错的 2.可以通过映射关系,从plot_importance的参数入手。但是可能会复杂一下。 3.可以使用xgb.DMatrix(tfeature_names=list),这个方法简单实用 ...
# 常规参数 booster gbtree 树模型做为基分类器(默认) gbliner 线性模型做为基分类器 silent silent=0时,不输出中间过程(默认) ...
# 常规参数 booster gbtree 树模型做为基分类器(默认) gbliner 线性模型做为基分类器 silent silent=0时,不输出中 ...
基于模型刷选特征方法有:排列重要性、shap value、null importance 这里简单介绍一下排列重要性: 一、排列重要性原理 首先建立一个模型,计算某列特征重要性时,打乱该列顺序,其余列不变,然后再使用打乱后的数据来预测,最后计算正确率;如果某列对模型预测很重要,那么打乱该列 ...
feature_importance的特征重要性 There are indeed several ways to get feature "importances". As often, there is no strict consensus about what this word ...
https://stackoverflow.com/questions/35983565/how-is-the-parameter-weight-dmatrix-used-in-the-gradient-boosting-procedure xgboost allows ...