符号编程 在之前的文章,我们介绍了NDArray模块,它是MXNet中处理数据的核心模块,我们可以使用NDArray完成非常丰富的数学运算。实际上,我们完全可以使用NDArray来定义神经网络,这种方式我们称它为命令式的编程风格,它的优点是编写简单直接,方便调试。像下面我们就定义了一个两层 ...
训练一个神经网络往往只需要简单的几步: 准备训练数据 初始化模型的参数 模型向往计算与向后计算 更新模型参数 设置相关的checkpoint 如果上述的每个步骤都需要我们写Python的代码去一步步实现,未免显的繁琐,好在MXNet提供了Module模块来解决这个问题,Module把训练和推理中一些常用到的步骤代码进行了封装。对于一定已经用Symbol定义好的神经网络,我们可以很容易的使用Modu ...
2018-03-15 09:51 0 4261 推荐指数:
符号编程 在之前的文章,我们介绍了NDArray模块,它是MXNet中处理数据的核心模块,我们可以使用NDArray完成非常丰富的数学运算。实际上,我们完全可以使用NDArray来定义神经网络,这种方式我们称它为命令式的编程风格,它的优点是编写简单直接,方便调试。像下面我们就定义了一个两层 ...
TFLearn构建神经网络 Building the network TFLearn lets you build the network by defining the layers. Input layer For the input layer, you just need ...
1.卷积神经网络由输入层,卷积层,激活函数,池化层,全连接层组成. input(输入层)--conv(卷积层)--relu(激活函数)--pool(池化层)--fc(全连接层) 2.卷积层: 主要用来进行特征的提取 卷积操作是使用一个二维的卷积核在一个批处理的图片上进行不断扫描。具体操作 ...
一、自定义神经网络 验证一下结果: model(x[10,:])y[10,:] Out[32]: ...
作者|Rashida Nasrin Sucky 编译|VK 来源|Medium 神经网络已经被开发用来模拟人脑。虽然我们还没有做到这一点,但神经网络在机器学习方面是非常有效的。它在上世纪80年代和90年代很流行,最近越来越流行。计算机的速度足以在合理的时间内运行一个大型神经网络。在本文 ...
1. torch.nn.Linear PyTorch 中的 nn.linear() 是用于设置网络中的全连接层的,需要注意的是全连接层的输入与输出都是二维张量,一般形状为 [batch_size, size]。 """ in_features: 指的是输入矩阵的列数,即输入二维张量 ...
本博文适用于初学者,利用深度学习来进行图像识别的应用 对于广大老司机们来说肯定是so easy啦 ON.1 首先准备大量样本,样本?从哪找,这个我相信老司机本绝对比我在行,嘻嘻 这个我碰到过一个坑,初学者们准备样本时,正常照片和非正常照片(非正常照片?我们不是鉴黄吗?嗯嗯),本来博主准备 ...
现在指纹登录是一种很常见的登录方式,特别是在金融类APP中,使用指纹进行登录、支付的特别多。指纹登录本身是一种指纹身份认证技术,通过识别当前用户的指纹信息,进而确认用户在系统内的注册身份。 指纹认证 ...