原文:深度学习——自动编码器,对称网络结构

from:http: blog.csdn.net a article details .初识Auto Encoder 年Rumelhart 提出自动编码器的概念,并将其用于高维复杂数据处理,促进了神经网络的发展。自编码神经网络是一种无监督学习算法,它使用了反向传播算法,并让目标值等于输入值,比如。图 是一个自编码神经网络的示例。 图 自动编码器 autoencoder 是神经网络的一种,该网络可以 ...

2018-03-14 10:21 1 3132 推荐指数:

查看详情

深度自动编码器

深度自动编码器由两个对称深度置信网络组成,其中一个深度置信网络通常有四到五个浅层,构成负责编码的部分,另一个四到五层的网络则是解码部分。 这些层都是受限玻尔兹曼机(RBM)(注:也可以采用自编码器预训练?),即构成深度置信网络的基本单元,它们有一些特殊之处,我们将在下文中介绍。以下是简化的深度 ...

Thu Jul 25 07:07:00 CST 2019 0 702
深度学习——无监督,自动编码器——尽管自动编码器与 PCA 很相似,but自动编码器既能表征线性变换,也能表征非线性变换;而 PCA 只能执行线性变换

自动编码器是一种有三层的神经网络:输入层、隐藏层(编码层)和解码层。该网络的目的是重构其输入,使其隐藏层学习到该输入的良好表征。 自动编码器神经网络是一种无监督机器学习算法,其应用了反向传播,可将目标值设置成与输入值相等。自动编码器的训练目标是将输入复制到输出。在内部,它有一个描述用于 ...

Wed Mar 14 18:13:00 CST 2018 2 2213
机器学习 - 自动编码器

自动编码器 什么是自动编码器(AutoEncoder) 自动编码器是一种特殊的神经网络,它希望拟合出一个输入层与输出层神经元个数相同的神经网络,使得\(h_{(w,b)(x)} = x\)或近似相等. 它力求逼近一个恒等函数,使得神经网络的输出接近于输入x.使用自动编码器的意义在于 ...

Thu Dec 03 00:01:00 CST 2020 0 411
李宏毅深度学习笔记-无监督学习-深度自动编码器

什么是Auto-encoder 我们首先去找一个encoder,input一个东西,比如图像识别做MNIST的话,就是input一张手写数字图片(28 *28 维像素点),那就是input 784维的向量。这个encoder可能是一个神经网络,output就是一个code,这个code会远比 ...

Mon Jun 29 06:18:00 CST 2020 0 3675
去噪自动编码器

降噪自动编码器是一种用于图像去噪无监督的反馈神经网络 原理如下图所示 训练代码如下 测试代码如下 打赏 如果对您有帮助,就打赏一下吧O(∩_∩)O ...

Mon May 25 23:21:00 CST 2020 0 770
堆叠式自动编码器

堆叠式自动编码器 自动编码器可以具有多个隐藏层。在这种情况下,它们被称为堆叠式自动编码器(或深度自动编码器)。添加更多的层有助于自动编码器学习更多的复杂的编码。就是说,要注意不要使自动编码器过于强大。想象一个强大的编码器,它只是学会了把每个输入映射到单个任意数字(而解码学习反向映射)。显然 ...

Fri Jan 07 02:16:00 CST 2022 0 1836
AE(自动编码器)与VAE(变分自动编码器)简单理解

AE(Auto Encoder, 自动编码器) AE的结构 如上图所示,自动编码器主要由两部分组成:编码器(Encoder)和解码(Decoder)。编码器和解码可以看作是两个函数,一个用于将高维输入(如图片)映射为低维编码(code),另一个用于将低维编码(code)映射为高维 ...

Thu Apr 22 02:49:00 CST 2021 0 375
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM