1.数据清理 缺失值的处理 删除变量:若变量的缺失率较高(大于80%),覆盖率较低,且重要性较低,可以直接将变量删除。 定值填充:工程中常见用-9999进行替代 统计量填充:若缺失率较低(小于95%)且重要性较低,则根据数据分布的情况进行填充。对于数据符合均匀分布,用该变量的均值填补 ...
一 概述 在工程实践中,我们得到的数据会存在有缺失值 重复值等,在使用之前需要进行数据预处理。数据预处理没有标准的流程,通常针对不同的任务和数据集属性的不同而不同。数据预处理的常用流程为:去除唯一属性 处理缺失值 属性编码 数据标准化正则化 特征选择 主成分分析。 二 数据预处理方法 . 去除唯一属性 唯一属性通常是一些id属性,这些属性并不能刻画样本自身的分布规律,所以简单地删除这些属性即可。 ...
2018-03-07 14:54 0 40764 推荐指数:
1.数据清理 缺失值的处理 删除变量:若变量的缺失率较高(大于80%),覆盖率较低,且重要性较低,可以直接将变量删除。 定值填充:工程中常见用-9999进行替代 统计量填充:若缺失率较低(小于95%)且重要性较低,则根据数据分布的情况进行填充。对于数据符合均匀分布,用该变量的均值填补 ...
(一)数值特征 数值特征(numerical feature),可以是连续的(continuous),也可以是离散的(discrete),一般表示为一个实数值。 例:年龄、价格、身高、体重、测量数据。 不同算法对于数值特征的处理要求不同。下文中的一些数据处理方法,因为是针对某一特征列的单调 ...
创建日期: 2020-03-11 16:59:10 这两天又重新回顾了一下医学图像数据的读取和预处理方法,在这里总结一下。 基于深度学习做医学图像数据分析,例如病灶检测、肿瘤或者器官分割等任务,第一步就是要对数据有一个大概的认识。但是我刚刚入门医学图像分割的时候,很迷茫不知道自己该干啥,不知道 ...
一. NTU论文中的预处理方法 We translate them to the body coordinate system with its origin on the “middle of the spine” joint (number 2 in Figure 1), followed ...
一.基本概念 为什么需要数据预处理: 现实世界中数据大体上都是不完整,不一致的脏数据,无法直接进行数据挖掘,或挖掘结果差强人意。为了提高数据挖掘的质量产生了数据预处理技术 数据:数据对象及其属性的集合 属性值是分配给属性的数字或符号 属性和属性值的区别 – 相同的属性可以映射到不同的属性 ...
1. 标准化(Standardization or Mean Removal and Variance Scaling) 变换后各维特征有0均值,单位方差。也叫z-score规范化(零均值规范化)。 ...
1、标准化(中心化) 在许多机器学习执行前,需要对数据集进行标准化处理。因为很对算法假设数据的特征服从标准正态分布。所以如果不对数据标准化,那么算法的效果会很差。 例如,在学习算法的目标函数,都假设数据集的所有特征集中在0附近,并且有相同的方差。如果某个特征的方差远大于其他特征的方差 ...
[转载请注明出处] 数据标准化总的来说分为两种。 其一: 其二: 其实第二种是第一种的推广,但侧重点又有所不同。 对比softmax函数: x=Softmax(x) softmax函数是将向量各个分量压缩至[0,1]区间,其分量和等于1。 乍一看很像标准化,其实两者完全 ...