自然语言处理的CNN模型中几种常见的池化方法 本文是在[1]的基础上进行的二次归纳。 0x00 池化(pooling)的作用 首先,回顾一下NLP中基本的CNN模型的卷积和池化的大致原理[2]。filter(特征抽取器,卷积核,CV上称之为滤波器)在一个窗口(text region ...
CNN是目前自然语言处理中和RNN并驾齐驱的两种最常见的深度学习模型。图 展示了在NLP任务中使用CNN模型的典型网络结构。一般而言,输入的字或者词用Word Embedding的方式表达,这样本来一维的文本信息输入就转换成了二维的输入结构,假设输入X包含m个字符,而每个字符的Word Embedding的长度为d,那么输入就是m d的二维向量。 图 自然语言处理中CNN模型典型网络结构 这里可 ...
2018-03-06 10:36 0 1946 推荐指数:
自然语言处理的CNN模型中几种常见的池化方法 本文是在[1]的基础上进行的二次归纳。 0x00 池化(pooling)的作用 首先,回顾一下NLP中基本的CNN模型的卷积和池化的大致原理[2]。filter(特征抽取器,卷积核,CV上称之为滤波器)在一个窗口(text region ...
卷积神经网络(Convolution Neural Network, CNN)在数字图像处理领域取得了巨大的成功,从而掀起了深度学习在自然语言处理领域(Natural Language Processing, NLP)的狂潮。2015年以来,有关深度学习在NLP领域的论文层出不穷 ...
为什么需要平滑操作 假设有一个预料集 这个时候要计算“我喜欢喝咖啡”的概率 假设我们用bi-gram模型来计算,也就是说 P(我喜欢喝咖啡) = P(我)P(喜欢|我)P(喝|喜欢)P(咖啡|喝) = (3/16 ...
自然语言处理在大数据以及近年来大火的人工智能方面都有着非同寻常的意义。那么,什么是自然语言处理呢?在没有接触到大数据这方面的时候,也只是以前在学习计算机方面知识时听说过自然语言处理。书本上对于自然语言处理的定义或者是描述太多专业化。换一个通俗的说法,自然语言处理就是把我们人类的语言通过一些方式 ...
LDA 在主题模型中占有非常重要的地位,常用来文本分类。 LDA是基于贝叶斯模型的,涉及到贝叶 ...
自然语言处理中的语言模型预训练方法(ELMo、GPT和BERT) 最近,在自然语言处理(NLP)领域中,使用语言模型预训练方法在多项NLP任务上都获得了不错的提升,广泛受到了各界的关注。就此,我将最近看的一些相关论文进行总结,选取了几个代表性模型(包括ELMo [1],OpenAI GPT ...
汉语中句子以字为单位的,但语义理解仍是以词为单位,所以也就存在中文分词问题。主要的技术可以分为:规则分词、统计分词以及混合分词(规则+统计)。 基于规则的分词是一种机械分词,主要依赖于维护词典,在切分时将与剧中的字符串与词典中的词进行匹配。主要包括正向最大匹配法、逆向最大匹配法以及双向最大匹配 ...
。 经典的信息检索模型包括布尔模型,向量模型,TF-IDF模型。布尔模型以集合的布尔运算为基础,查询效率 ...