于深度学习的各个地方,由于在实习过程中需要修改网络,修改的网络在训练过程中无法收敛,就添加了BN层进去 ...
一般说的BN操作是指caffe中的BatchNorm Scale, 要注意其中的use global states:默认是true 在src caffe caffe.proto 训练时:use global states:false 测试时:use global states:true 重要 可以看到很多都是如下: layer bottom: conv top: conv name: bn con ...
2018-03-02 15:23 0 2296 推荐指数:
于深度学习的各个地方,由于在实习过程中需要修改网络,修改的网络在训练过程中无法收敛,就添加了BN层进去 ...
以前使用Caffe的时候没注意这个,现在使用预训练模型来动手做时遇到了。在slim中的自带模型中inception, resnet, mobilenet等都自带BN层,这个坑在《实战Google深度学习框架》第二版这本书P166里只是提了一句,没有做出解答。 书中说训练时和测试时使用 ...
在训练一个小的分类网络时,发现加上BatchNorm层之后的检索效果相对于之前,效果会有提升,因此将该网络结构记录在这里,供以后查阅使用: 添加该层之前: 添加该层之后: ...
最近实验当中借鉴了FPN网络,由于FPN网络对图片shape有要求,采用了两种方式,其一是在data_layer.cpp中,对原图进行padding操作;其二是需要对特征图进行类似crop操作,使得两者进行eltwise操作的时候shape是一致的。 简单说一下添加padding的操作 ...
caffe中大多数层用C++写成。 但是对于自己数据的输入要写对应的输入层,比如你要去图像中的一部分,不能用LMDB,或者你的label 需要特殊的标记。 这时候就需要用python 写一个输入层。 如在fcn 的voc_layers.py 中 有两个类: VOCSegDataLayer ...
常规的神经网络连接结构如下  当网络训练完成, 在推导的时候为了加速运算, 通常将卷积层和 batch-norm 层融合, 原理如下 \[\begin{align*} y_{conv} &= w \cdot x + b \\ y_{bn} &= \gamma ...
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6015990.html BatchNorm具体网上搜索。 caffe中batchNorm层是通过BatchNorm+Scale实现的,但是默认没有bias。torch中的BatchNorm层使用 ...
对Resnet50.onnx模型进行BN和卷积层的融合 一、准备工作 安装ONNX You can then install ONNX from PyPi (Note: Set environment variable ONNX_ML=1 for onnx-ml): pip ...