(erbqi)导语 QQ图全称 Quantile-Quantile图,也就是分位数-分位数图,简单理解就是把两个分布相同分位数的值,构成点(x,y)绘图;如果两个分布很接近,那个点(x,y)会分布在y=x直线附近;反之则不;可以通过QQ图从整体评估回归模型的预测效果 ...
决定系数 coefficient of determination,R 是反映模型拟合优度的重要的统计量,为回归平方和与总平方和之比。R 取值在 到 之间,且无单位,其数值大小反映了回归贡献的相对程度,即在因变量Y的总变异中回归关系所能解释的百分比。 R 是最常用于评价回归模型优劣程度的指标,R 越大 接近于 ,所拟合的回归方程越优。 假设一数据集包括y ,...,yn共n个观察值,相对应的模型 ...
2018-03-02 14:26 0 902 推荐指数:
(erbqi)导语 QQ图全称 Quantile-Quantile图,也就是分位数-分位数图,简单理解就是把两个分布相同分位数的值,构成点(x,y)绘图;如果两个分布很接近,那个点(x,y)会分布在y=x直线附近;反之则不;可以通过QQ图从整体评估回归模型的预测效果 ...
MAE、MSE、RMSE、MAPE(MAPD)这些都是常见的回归预测评估指标,重温下它们的定义和区别以及优缺点吧 MAE(Mean Absolute Error) 平均绝对误差 ...
本文转自:mse、rmse、mae、r2指标的总结以及局限性 衡量线性回归法的指标:MSE, RMSE和MAE 举个栗子: 对于简单线性回归,目标是找到a,b 使得 尽可能小 其实相当于是对训练数据集而言的,即 当我们找到a,b后,对于测试数据 ...
在二维坐标上绘制线性回归曲线。那么如何对回归模型的性能有一个直观的评估呢?可以通过绘制预测值的残差图, ...
在回归任务(对连续值的预测)中,常见的评估指标(Metric)有:平均绝对误差(Mean Absolute Error,MAE)、均方误差(Mean Square Error,MSE)、均方根误差(Root Mean Square Error,RMSE)和平均绝对百分比误差(Mean ...
1. 皮尔逊相关系数(Pearson Correlation Coefficient) 1.1 衡量两个值线性相关强度的量 1.2 取值范围[-1, 1] ...
python金融风控评分卡模型和数据分析微专业课(博主亲自录制视频):http://dwz.date/b9vv 1.选择最简单模型 如果不能满足: 增加参数,增加R**2 判断是否overfittiing ...
工作和生活中存在大量的具有相关性的事件,当找到不同变量之间的关系,我们就会用到回归分析。回归分析(Regression Analysis):是用来确定2个或2个以上变量间关系的一种统计分析方法。 在回归分析中,变量有2类:因变量 和 自变量。 因变量:通常是指实际问题中所关心的指标,用Y ...