一、概述 Spark 作为一个基于内存的分布式计算引擎,其内存管理模块在整个系统中扮演着非常重要的角色。理解 Spark 内存管理的基本原理,有助于更好地开发 Spark 应用程序和进行性能调优。本文旨在梳理出 Spark 内存管理的脉络,抛砖引玉,引出读者对这个话题的深入探讨。本文中阐述的原理 ...
一 前述 Spark中调优大致分为以下几种 ,代码调优,数据本地化,内存调优,SparkShuffle调优,调节Executor的堆外内存。 二 具体 代码调优 避免创建重复的RDD,尽量使用同一个RDD 对多次使用的RDD进行持久化 如何选择一种最合适的持久化策略 默认情况下,性能最高的当然是MEMORY ONLY,但前提是你的内存必须足够足够大,可以绰绰有余地存放下整个RDD的所有数据。因为不 ...
2018-03-01 20:46 0 4535 推荐指数:
一、概述 Spark 作为一个基于内存的分布式计算引擎,其内存管理模块在整个系统中扮演着非常重要的角色。理解 Spark 内存管理的基本原理,有助于更好地开发 Spark 应用程序和进行性能调优。本文旨在梳理出 Spark 内存管理的脉络,抛砖引玉,引出读者对这个话题的深入探讨。本文中阐述的原理 ...
环境极其恶劣情况下: import org.apache.spark.SparkContext import org.apache.spark.rdd.RDD import org.apache.spark.sql.{DataFrame, Row, SQLContext} import ...
一.JVM调优之原理概述以及降低cache操作的内存占比 1、常规性能调优:分配资源、并行度。。。等 2、JVM调优(Java虚拟机):JVM相关的参数,通常情况下,如果你的硬件配置、基础的JVM的配置,都ok的话,JVM通常不会造成太严重的性能问题;反而更多 ...
【Spark内存模型】 Spark在一个executor中的内存分为3块:storage内存、execution内存、other内存。 1. storage内存:存储broadcast,cache,persist数据的地方。 2. execution内存:执行内存,join ...
Spark性能调优之Shuffle调优 • Spark底层shuffle的传输方式是使用netty传输,netty在进行网络传输的过程会申请堆外内存(netty是零拷贝),所以使用了堆外内存 ...
总结一下spark的调优方案--性能调优: 一、调节并行度 1、性能上的调优主要注重一下几点: Excutor的数量 每个Excutor所分配的CPU的数量 每个Excutor所能分配的内存量 Driver端分配的内存数量 2、如何分配资源 ...
最近用到spark 接kafka数据落到kudu里,如果用默认spark 参数,会出现一些问题,下面是在生产上调优后的一些参数,供参考 //推测执行spark.locality.wait=2sspark.speculation=truespark.speculation.interval ...
Spark调优 目录 Spark调优 一、代码规范 1.1 避免创建重复RDD 1.2 尽量复用同一个RDD 1.3 多次使用的RDD要持久化 1.4 使用高性能算子 1.5 好习惯 ...