场论理论包括多种形式,比如简单的向量场,而梯度场则是由数量场所得到的矢量场,它的定义与坐标系的选择无关。梯度场在微分学、积分学以及算子的定义方面起着重要的作用。梯度场在物理学中也称为保守场,这来源于能量守恒定律。 梯度场与势函数 f(x, y)是关于x和y的函数,如果存在向量场F ...
独立变量,即一个量改变不会引起除因变量以外的其他量的改变。只有将某物理量由独立变量来表达,由它给出的函数关系才是正确的。 非独立变量,一个量改变会引起除因变量以外的其他量改变。把非独立变量看做是独立变量,是确定物理量间关系的一大忌。 正确确定物理表达式中的物理量是常量还是变量,是独立变量还是非独立变量,不但是正确解答有关问题的前提和保障,而且还可以简化解答过程。 在理想的气体状态方程中,PV T ...
2018-03-01 14:31 1 1226 推荐指数:
场论理论包括多种形式,比如简单的向量场,而梯度场则是由数量场所得到的矢量场,它的定义与坐标系的选择无关。梯度场在微分学、积分学以及算子的定义方面起着重要的作用。梯度场在物理学中也称为保守场,这来源于能量守恒定律。 梯度场与势函数 f(x, y)是关于x和y的函数,如果存在向量场F ...
在一元函数中,我们已经知道导数就是函数的变化率。对于二元函数我们同样要研究它的“变化率”。 在xOy平面内,当动点由P(x0,y0)沿不同方向变化时,函数f(x,y)的变化快慢一般说来是不同 ...
在流体运动中,通量是单位时间内流经某单位面积的某属性量,是表示某属性量输送强度的物理量。在大气科学中,包含动量通量、热通量、物质通量和水通量。 本章关于向量和点积的相关知识课参考《线性代数笔记3——向量2(点积)》。 通量 通量实际上是一种线积分。如果有一条平面曲线C和这个平面 ...
二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。 本篇涉及到的单变量积分的知识可参考《数学笔记13 ...
在二重积分中,极坐标替换是一种特殊情况,更一般的变量替换后的面积元是通过雅可比行列式来关联,替换后的积分域也会随之变动。 变量替换 二重积分可以计算面积,现在有一个椭圆 (x/a)2 + (y/b)2 = 1,如何计算该椭圆的面积? 很容易写出Area = ∫∫Rdxdy ...
线积分或路径积分是积分的一种。在数学中,线积分的积分函数的取值沿的不是区间,而是特定的曲线,称为积分路径。在物理学上,线积分是质点在外力作用下运动一段距离后总功。 线积分 在物理学上,力所做的功等于力与位移的乘积;更严格地说,力在足够小的距离上做的功等于力的向量与位移向量的点积 ...
线积分或路径积分是积分的一种。在数学中,线积分的积分函数的取值沿的不是区间,而是特定的曲线,称为积分路径。在物理学上,线积分是质点在外力作用下运动一段距离后总功。 如果把空间向量场F = Pi + Qj + Rk看作力场,C是质点在力场作用下移动的曲线,那么C在力场中线积分就是质点在力作 ...
散度定理,又称为高斯散度定理、高斯公式、高斯-奥斯特罗格拉德斯基公式或高-奥公式,是指在向量分析中,一个把向量场通过曲面的流动(即通量)与曲面内部的向量场的表现联系起来的定理。它经常应用于矢量分析中。矢量场的散度在体积D上的体积分等于矢量场在限定该体积的闭合曲面s上的面积分。 散度定理 ...