一.数据分析的步骤: 1.查看数据并提出问题 2.数据清洗 3.代码编写,提取出结果数据,并分析是否有异常数据,修改代码 4.根据数据选择合适的图表进行展示 5.根据图表小组讨论交流获得最终的结果 二.环境与原始数据准备 安装Anaconda2版本,同时更新软件包更新最新版 ...
Python 数据分析环境 数据分析领域有很多可选方案,例如SPSS傻瓜式分析工具,SAS专业性商业分析工具,R和python这类需要代码编程类的工具。个人选择是python这类,包括pandas,numpy,matplotlib,sklearn,keras。基于jupyter或者zeppelin作为编程界面,可以用python开发出比较清爽的数据分析报告。 总体来说,jupyter notebo ...
2018-03-01 10:55 0 12384 推荐指数:
一.数据分析的步骤: 1.查看数据并提出问题 2.数据清洗 3.代码编写,提取出结果数据,并分析是否有异常数据,修改代码 4.根据数据选择合适的图表进行展示 5.根据图表小组讨论交流获得最终的结果 二.环境与原始数据准备 安装Anaconda2版本,同时更新软件包更新最新版 ...
最近在做Python职位分析的项目,做这件事的背景是因为接触Python这么久,还没有对Python职位有一个全貌的了解。所以想通过本次分析了解Python相关的职位有哪些、在不同城市的需求量有何差异、薪资怎么样以及对工作经验有什么要求等等。分析的链路包括: 数据 ...
1 什么是numpy numpy是一个在Python中做科学计算的基础库,重在数值计算,也是大部分Python科学计算库的基础库,多用于大型、多维数据上执行数值计算。 在NumPy 中,最重要的对象是称为 ndarray 的N维数组类型,它是描述相同类型的元素集合,numpy所有功能几乎都以 ...
SPSS、RapidMiner、KNIME以及Kettle四款工具都可以用来进行数据分析,只是彼此有各自的侧重点和有劣势。它们都可以逐步的定义数据分析过程,也同样都可以对数据进行ETL处理。笔者从自己关心的角度简单对比以上四款数据分析工具。 SPSS不用多说,一款成功的商业数据分析 ...
什么是数据分析? 运用不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。 熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析结果就没有太大的使用价值。 一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销 ...
目录 Numpy Numpy常用函数以及用法 (1)创建ndarray数组 (2)操作数组 ...
一、Python概述 Python与Excel对比。 Excel:1.具备强大的功能,但面对大量的数据,处理麻烦,处理速度无法满足需求。 2.Excel停留在描述性分析阶段,例如:对比分析,趋势分析,结构分析等。 Python:1.Python语言强大 ...
数据分析大体上的分析结构如下所示(分析流程图如下所示): 首先,需要对现状和预期有一个很好的把握。其次,弄清现状和预期之间的差距,并调查导致差距产生的关键因素,即发现问题。这样的因素可能很多,所以要收集数据和加工,并在此基础上进行数据分析。主要是挖掘出导致此问题发生的关键性因素,然后综合 ...