求解带约束的最优化问题详解 ...
对于等式约束优化问题的求解,只需要通过一个拉格朗日系数把等式约束和目标函数组合成为一个新的无约束条件的函数 再求出这个函数的极值就得到所求优化问题的解,这个合成的函数就叫拉格朗日函数,这种方法就叫拉格朗日乘子法。 将函数对各个变量求偏导并令结果为 ,建立等式求出结果。 例: 求解: 改造的目标函数是,则: 还有拉格朗日乘子在不等式优化问题中的求解,下次再更新了 ...
2018-02-28 18:59 0 1304 推荐指数:
求解带约束的最优化问题详解 ...
1 等式约束优化问题 等式约束问题如下: 求解方法包括:消元法、拉格朗日乘子法。 1、消元法 通过等式约束条件消去一个变量,得到其他变量关于该变量的表达式代入目标函数,转化为无约束的极值 ...
引言 本篇文章将详解带有约束条件的最优化问题,约束条件分为等式约束与不等式约束,对于等式约束的优化问题,可以直接应用拉格朗日乘子法去求取最优值;对于含有不等式约束的优化问题,可以转化为在满足 KKT 约束条件下应用拉格朗日乘子法求解。拉格朗日求得的并不一定是最优解,只有在凸优化的情况下,才能保证 ...
拉格朗日乘数法解含不等式约束的最优化问题 拉格朗日乘子法(Lagrange Multiplier)和 KKT(Karush-Kuhn-Tucker)条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件。当然,这两个方法求得的结果只是必要条件 ...
目录 1 将有约束问题转化为无约束问题 1.1 拉格朗日法 1.1.1 KKT条件 1.1.2 拉格朗日法更新方程 1.1.3 凸优化问题下的拉格朗日法 1.2 罚函数法 ...
第四章:最速下降算法。最速下降法、拟牛顿法等都是求解准则函数(即无约束优化问题)的算法,这就需要有一个 ...
主问题 (primal problem) 具有 \(m\) 个等式约束和 \(n\) 个不等式约束,且可行域 \(\mathbb{D} \subset \mathbb{R}^d\)的非空优化问题 \[\begin{align} \min_x \ f(\boldsymbol{x ...
下乘法算法的推导及代码实现,这里不免有一个疑问:明明是一个约束的优化问题,虽然乘法算法巧妙地将其变为一个 ...