无意中浏览一篇文章,中间提到了基于多尺度的图像的细节提升算法,尝试了一下,还是有一定的效果的,结合最近一直研究的SSE优化,把算法的步骤和优化过程分享给大家。 论文的全名是DARK IMAGE ENHANCEMENT BASED ON PAIRWISE TARGET CONTRAST ...
在做图像处理的SSE优化时,也会经常遇到一些小的过程 数值优化等代码,本文分享一些个人收藏或实现的代码片段给大家。 一 快速求对数运算 对数运算在图像处理中也是个经常会遇到的过程,特备是在一些数据压缩和空间转换时常常会用到,而且是个比较耗时的函数,标准的SSE库里并没有提供该函数的实现,如果需要高精度的SSE版本,网络上已经有了,参考:https: github.com to miz sse m ...
2018-02-25 13:34 2 2627 推荐指数:
无意中浏览一篇文章,中间提到了基于多尺度的图像的细节提升算法,尝试了一下,还是有一定的效果的,结合最近一直研究的SSE优化,把算法的步骤和优化过程分享给大家。 论文的全名是DARK IMAGE ENHANCEMENT BASED ON PAIRWISE TARGET CONTRAST ...
本文重点主要不在于FFT的SSE优化,而在于使用FFT实现快速卷积的相关技巧和过程。 关于FFT变换,有很多参考的代码,特别是对于长度为2的整数次幂的序列,实现起来也是非常简易的,而对于非2次幂的序列,就稍微有点麻烦了,matlab中是可以实现任意长度FFT的,FFTW ...
在SSE图像算法优化系列五:超高速指数模糊算法的实现和优化(10000*10000在100ms左右实现) 一文中,我曾经说过优化后的ExpBlur比BoxBlur还要快,那个时候我比较的BoxBlur算法是通过积分图+SSE实现的,我在09年另外一个博客账号上曾经提供过一篇这个文章 ...
因未测试其他作者的算法时间和效率,本文不敢自称是最快的,但是速度也可以肯定说是相当快的,在一台I5机器上占用单核的资源处理 3000 * 2000的灰度数据用时约 20ms,并且算法和核心的大小是无关的,即所谓的o(1)算法。 在实现本算法之前,也曾经参考何凯明在暗通道去雾时 ...
在很多场合需要高效率的肤色检测代码,本人常用的一个C++版本的代码如下所示: 这段代码效率的效率已经很高了,对于1080P含有人脸的一般图像大概也就4.0ms就能处理完,效果嘛对于正常光照和肤色的检测也还凑合,如下所示 ...
最近一直沉迷于SSE方面的优化,实在找不到想学习的参考资料了,就拿个笔记本放在腿上翻翻OpenCv的源代码,无意中看到了OpenCv中关于积分图的代码,仔细研习了一番,觉得OpenCv对SSE的灵活运用真的做的很好,这里记录下我对该段代码的品味并将其思路扩展到其他通道数的图像 ...
分支判断的语句一般来说是不太适合进行SSE优化的,因为他会破坏代码的并行性,但是也不是所有的都是这样的,在合适的场景中运用SSE还是能对分支预测进行一定的优化的,我们这里以某一个算法的部分代码为例进行讲解。 在某一个版本的USM锐化算法中有这样的一段代码: 这个USM ...
本文是在学习https://blog.csdn.net/housisong/article/details/1452249一文的基础上对算法的理解和重新整理,再次非常感谢原文作者的深入分析以及分享。 三次卷积插值的基础原理也是对取样点附近的领域像素按照某种权重分布计算加权的结果值 ...