黄文坚的tensorflow实战一书中的第四章,讲述了tensorflow实现多层感知机。Hiton早年提出过自编码器的非监督学习算法,书中的代码给出了一个隐藏层的神经网络,本人扩展到了多层,改进了代码。实现多层神经网络时,把每层封装成一个NetLayer对象(本质是单向链表),然后计算隐藏层输出 ...
关于本文说明,已同步本人另外一个博客地址位于http: blog.csdn.net qq ,详见http: blog.csdn.net qq article details 。 本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过。 一 相关概念 稀疏性 Sparsity 及稀疏编码 Sparse Coding S ...
2018-02-24 22:07 0 6580 推荐指数:
黄文坚的tensorflow实战一书中的第四章,讲述了tensorflow实现多层感知机。Hiton早年提出过自编码器的非监督学习算法,书中的代码给出了一个隐藏层的神经网络,本人扩展到了多层,改进了代码。实现多层神经网络时,把每层封装成一个NetLayer对象(本质是单向链表),然后计算隐藏层输出 ...
注意:代码源自[1][2] [1] 黄文坚.TensorFlow实战.北京:电子工业出版社 [2] https://blog.csdn.net/qq_37608890/article/details/79352212 ...
背景简介 TensorFlow实现讲解 设计新思路: 参数初始化新思路: 主程序: 图结构实际实现 Version1: 导入包: import numpy as np import ...
引言 前面三篇文章介绍了变分推断(variational inference),这篇文章将要介绍变分自编码器,但是在介绍变分自编码器前,我们先来了解一下传统的自编码器。 自编码器 自编码器(autoencoder)属于无监督学习模型(unsupervised learning ...
神经网络就是一种特殊的自编码器,区别在于自编码器的输出和输入是相同的,是一个自监督的过程,通过训练自编码器,得到每一层中的权重参数,自然地我们就得到了输入x的不同的表示(每一层代表一种)这些就是特征,自动编码器就是一种尽可能复现原数据的神经网络。 “自编码”是一种 ...
自编码器论文的提出是为了神经网络权重更好的初始化,他将多层网络一层一层的通过自编码器确定初始权重,最终再对模型进行权重训练; 这种初始化权重的方式目前已经不是主流,但他的思路可以借鉴到很多场景; 模型简介 自编码器,AutoEncode,它分为两部分,前一部分是编码器,后一部分是解码器 ...
是通过神经网络实现的。 自编码器特点: 1.自动编码是数据相关的,这意味着自动编码器只能压缩那些与 ...
自编码器可以用于降维,添加噪音学习也可以获得去噪的效果。 以下使用单隐层训练mnist数据集,并且共享了对称的权重参数。 模型本身不难,调试的过程中有几个需要注意的地方: 模型对权重参数初始值敏感,所以这里对权重参数w做了一些限制 需要对数据标准化 学习率设置合理 ...