原文:梯度下降与优化方法(BGD & SGD & Momentum & AdaGrad & RMSProp & Adam)

SGD SGD指stochastic gradient descent,即随机梯度下降。是梯度下降的batch版本。 对于训练数据集,我们首先将其分成n个batch,每个batch包含m个样本。我们每次更新都利用一个batch的数据,而非整个训练集。即: xt xt amp x xt role presentation xt xt xt x t x t x t amp x xt amp x am ...

2018-01-28 15:10 0 1370 推荐指数:

查看详情

SGD优化SGD+Momentum、Nesterov MomentumAdaGradRMSPropAdam

1. SGD的不足: ①呈“之”字型,迂回前进,损失函数值在一些维度的改变得快(更新速度快),在一些维度改变得慢(速度慢)- 在高维空间更加普遍 ②容易陷入局部极小值和鞍点: 局部最小值: 鞍点: ③对于凸优化而言,SGD不会收敛,只会在最优 ...

Wed Feb 05 09:28:00 CST 2020 0 2579
深度学习中常见的优化方法——SGDMomentumAdagradRMSpropAdam

SGD SGD是深度学习中最常见的优化方法之一,虽然是最常使用的优化方法,但是却有不少常见的问题。 learning rate不易确定,如果选择过小的话,收敛速度会很慢,如果太大,loss function就会在极小值处不停的震荡甚至偏离。每个参数的learning rate都是相同 ...

Mon Mar 16 01:34:00 CST 2020 0 604
神经网络优化方法总结:SGDMomentumAdaGradRMSPropAdam

1. SGD Batch Gradient Descent 在每一轮的训练过程中,Batch Gradient Descent算法用整个训练集的数据计算cost fuction的梯度,并用该梯度对模型参数进行更新: 优点: cost fuction若为凸函数,能够保证收敛到全局 ...

Sun Sep 30 07:06:00 CST 2018 0 3033
深度学习(九) 深度学习最全优化方法总结比较(SGDMomentum,Nesterov MomentumAdagrad,Adadelta,RMSpropAdam

前言 这里讨论的优化问题指的是,给定目标函数f(x),我们需要找到一组参数x(权重),使得f(x)的值最小。 本文以下内容假设读者已经了解机器学习基本知识,和梯度下降的原理。 SGD SGD指stochastic gradient descent,即随机梯度下降。是梯度下降 ...

Wed Jan 17 06:08:00 CST 2018 0 12350
深度学习面试题03:改进版梯度下降AdagradRMSpropMomentumAdam

目录   Adagrad法   RMSprop法   Momentum法   Adam法   参考资料 发展历史 标准梯度下降法的缺陷 如果学习率选的不恰当会出现以上情况 因此有一些自动调学习率的方法。一般来说,随着迭代次数的增加,学习率应该越来越小 ...

Wed Jul 03 21:57:00 CST 2019 1 1777
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM