pandas的数据结构介绍 要使用pandas,你首先要熟悉它的两个主要数据结构:Series和DataFrame。虽然它们并不能解决所有问题,但它们为大多数应用提供了一种可靠的、易于使用的基础 Series Series的字符串表现形式为:索引在左,值在右。由于我们没有为数据 ...
转自https: zhuanlan.zhihu.com p 目录: . pandas 的数据结构介绍 . . Series . . DataFrame . . 索引对象 . 基本功能 . . 重新索引 . . 丢弃指定轴上的项 . . 索引 选取和过滤 . . 算术运算和数据对齐 . . . 在算术方法中填充值 . . . DataFrame和Series之间的运算 . . 函数应用和映射 . . ...
2018-02-11 14:45 0 2014 推荐指数:
pandas的数据结构介绍 要使用pandas,你首先要熟悉它的两个主要数据结构:Series和DataFrame。虽然它们并不能解决所有问题,但它们为大多数应用提供了一种可靠的、易于使用的基础 Series Series的字符串表现形式为:索引在左,值在右。由于我们没有为数据 ...
1. pandas包括series、dataframe Series Series是一维的数组型对象。 Series包含了索引index和值value。比如说: DataFrame DataFrame是矩阵的数组表。 DataFrame既有行索引也有列索引,它可 ...
pandas是本书后续内容的首选库。pandas可以满足以下需求: 具备按轴自动或显式数据对齐功能的数据结构。这可以防止许多由于数据未对齐以及来自不同数据源(索引方式不同)的数据而导致的常见错误。. 集成时间序列功能 既能 ...
数据不完整在数据分析的过程中很常见。 pandas使用浮点值NaN表示浮点和非浮点数组里的缺失数据。 pandas使用isnull()和notnull()函数来判断缺失情况。 对于缺失数据一般处理方法为滤掉或者填充 ...
申明:本系列文章是自己在学习《利用Python进行数据分析》这本书的过程中,为了方便后期自己巩固知识而整理。 1 pandas读取文件的解析函数 read_csv 读取带分隔符的数据,默认分隔符 逗号 read_table 读取带分隔符的数据,默认分隔符 “\t” read_fwf 读取 ...
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并; pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起; 实例方法 ...
申明:本系列文章是自己在学习《利用Python进行数据分析》这本书的过程中,为了方便后期自己巩固知识而整理。 1 读取excel数据 2 检测缺失值 2.1 isnull返回一个含有布尔值的对象 2.2 notnull 是isnull 的否定 ...
重塑定义 重塑指的是将数据重新排列,也叫轴向旋转。 DataFrame提供了两个方法: stack: 将数据的列“旋转”为行。 unstack:将数据的行“旋转”为列 ...