问题背景 孙子定理是中国古代求解一次同余式方程组的方法。是数论中一个重要定理。又称中国余数定理。一元线性同余方程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下: 有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物 ...
前言 阅读本文前,推荐先学一下中国剩余定理。其实不学也无所谓,毕竟两者没啥关系 扩展CRT 我们知道,中国剩余定理是用来解同余方程组 begin cases x equiv c left mod m right x equiv c left mod m right ldots x equiv c r left mod m r right end cases 但是有一个非常令人不爽的事情就是它要求 ...
2018-02-07 13:53 15 6020 推荐指数:
问题背景 孙子定理是中国古代求解一次同余式方程组的方法。是数论中一个重要定理。又称中国余数定理。一元线性同余方程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下: 有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物 ...
扩展中国剩余定理讲解 1.运用领域 扩展中国剩余定理是解决向下面列出的一元线性同余方程组的一种数论知识,可以求出下面方程组中最下的正整数$x$。但是扩展中国剩余定理和中国剩余定理有什么区别呢?中国剩余定理对于$mod$是有限制的,他对于$mod$要求为两两互质,然而扩展中国剩余定理 ...
犇那肯定是秒切啊!。 中国剩余定理???好高级的东西啊,吓得我赶紧来个BFS( Baidu F ...
问题:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何? 简单点说就是,存在一个数x,除以3余2,除以5余三,除以7余二,然后求这个数。上面给出了解法。再明白这个解法的原理之前,需要先知道一下两个定理。 定理1:几个数相加,如果存在一个加数,不能被整数a整除 ...
问题:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何? 简单点说就是,存在一个数x,除以3余2,除以5余三,除以7余二,然后求这个数。上面给出了解法。再明白这个解法的原理之前,需要先知道一下两个定理。 定理1:两个数相加,如果存在一个加数,不能被整数a整除 ...
中国剩余定理(孙子定理)详解 原文:https://www.cnblogs.com/freinds/p/6388992.html 问题:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何? 说明白一点就是说,存在一个数x,除以3余2,除以5余三,除以 ...
原本是想把CRT、扩展CRT、欧几里得、扩展欧几里得都写在这,但由于博主太菜,刚刚才会EXCRT qwq 在退组边缘徘徊的我果然还是菜了一点啊!!! 布吉岛为什么但就是想奶一口gql省队稳了2333 不闲扯了,进入正题! 欧几里得(gcd)&&扩展欧几里得(exgcd ...
扩展中国剩余定理(EXCRT)学习笔记 用途 求解同余方程组 \(\begin{cases}x\equiv c_{1}\left( mod\ m_{1}\right) \\ x\equiv c_{2}\left( mod\ m_{2}\right) \\ \ldots \\ x\equiv ...