一. 决策树 1. 决策树: 决策树算法借助于树的分支结构实现分类,决策树在选择分裂点的时候,总是选择最好的属性作为分类属性,即让每个分支的记录的类别尽可能纯。 常用的属性选择方法有信息增益(Information Gain),增益比例(gain ratio),基尼指数(Gini index ...
以下均为自己看视频做的笔记,自用,侵删 还参考了:http: www.ai start.com ml In : Out : sepal length cm sepal width cm petal length cm petal width cm class . . . . Iris setosa . . . . Iris setosa . . . . Iris setosa . . . . I ...
2018-01-30 19:50 0 1713 推荐指数:
一. 决策树 1. 决策树: 决策树算法借助于树的分支结构实现分类,决策树在选择分裂点的时候,总是选择最好的属性作为分类属性,即让每个分支的记录的类别尽可能纯。 常用的属性选择方法有信息增益(Information Gain),增益比例(gain ratio),基尼指数(Gini index ...
,C4.5,CART 树是最重要的数据结构。 决策树示意图: 决策树最重要的知识点: 决策树学习采 ...
前言 本文试图提纲挈领的对决策树和随机森林的原理及应用做以分析 决策树 算法伪代码 def 创建决策树: if (数据集中所有样本分类一致): #或者其他终止条件 创建携带类标签的叶子节点 else: 寻找划分 ...
一、前述 决策树是一种非线性有监督分类模型,随机森林是一种非线性有监督分类模型。线性分类模型比如说逻辑回归,可能会存在不可分问题,但是非线性分类就不存在。二、具体原理 ID3算法 1、相关术语 根节点:最顶层的分类条件叶节点:代表每一个类别号中间节点:中间分类条件分枝:代表每一个条件 ...
欢迎大家前往腾讯云技术社区,获取更多腾讯海量技术实践干货哦~ 作者:汪毅雄 导语 本文用容易理解的语言和例子来解释了决策树三种常见的算法及其优劣、随机森林的含义,相信能帮助初学者真正地理解相关知识。 决策树 引言 决策树,是机器学习中一种非常常见的分类方法,也可以说是 ...
声明:本文是站在回归分析角度讲的,分类的理解可能跟这有点不一样。 1.前言 随机森林也是集成方法的一种,是对Bagging算法的改进。 随机森林主要有两步组成: 1)有放回的随机抽取样本数据,形成新的样本集。这部分和Bagging算法一样 ...
的大数据算法:随机森林模型+综合模型 模型组合(比如说有Boosting,Bagging等)与决策树相关的 ...
本文为senlie原创,转载请保留此地址:http://www.cnblogs.com/senlie/ 决策树---------------------------------------------------------------------1.描述:以树为基础的方法可以用于回归 ...