自然语言处理与深度学习: 语言模型: N-gram模型: N-Gram模型:在自然语言里有一个模型叫做n-gram,表示文字或语言中的n个连续的单词组成序列。在进行自然语言分析时,使用n-gram或者寻找常用词组,可以很容易的把一句话分解成若干个文字 ...
word vec word vec 是Mikolov 在Bengio Neural Network Language Model NNLM 的基础上构建的一种高效的词向量训练方法。 词向量 词向量 word embedding 是词的一种表示,是为了让计算机能够处理的一种表示。 因为目前的计算机只能处理数值, 诸英文,汉字等等它是理解不了的, 最简单地让计算机处理自然语言的方式就是为每个词编号, ...
2018-01-20 16:51 0 1879 推荐指数:
自然语言处理与深度学习: 语言模型: N-gram模型: N-Gram模型:在自然语言里有一个模型叫做n-gram,表示文字或语言中的n个连续的单词组成序列。在进行自然语言分析时,使用n-gram或者寻找常用词组,可以很容易的把一句话分解成若干个文字 ...
自然语言处理是一个历史悠久的方向,个人目前研究不深,所以本文以我个人的思路展开,具体内容大部分摘抄自其他大佬们的博客,其中主要摘抄自 目录 NLP的基本问题 NGram NGram,2Gram,3Gram NGram距离 NGram应用 ...
在许多自然语言处理任务中,许多单词表达是由他们的tf-idf分数决定的。即使这些分数告诉我们一个单词在一个文本中的相对重要性,但是他们并没有告诉我们单词的语义。Word2Vec是一类神经网络模型——在给定无标签的语料库的情况下,为语料库的单词产生一个能表达语义的向量。 word2vec ...
在word2vec出现之前,自然语言处理经常把字词转为one-hot编码类型的词向量,这种方式虽然非常简单易懂,但是数据稀疏性非常高,维度很多,很容易造成维度灾难,尤其是在深度学习中;其次这种词向量中任意两个词之间都是孤立的,存在语义鸿沟(这样就不能体现词与词之间的关系)而有Hinton大神 ...
转自:https://blog.csdn.net/fendouaini/article/details/79905328 1.回顾DNN训练词向量 上次说到了通过DNN模型训练词获得词向量,这次来讲解下如何用word2vec训练词获取词向量。 回顾下之前所说的DNN训练词向量的模型 ...
首先感谢无私分享的各位大神,文中很多内容多有借鉴之处。本次将自己的实验过程记录,希望能帮助有需要的同学。 一、从下载数据开始 现在的中文语料库不是特别丰富,我在之前的文章中略有整理, ...
Distributed Representation 这种表示,它最早是 Hinton 于 1986 年提出的,可以克服 one-hot representation 的缺点。 其基本想法是: 通过训练将某种语言中的每一个词映射成一个固定长度的短向量 ...