z变换及其收敛域 回顾前面的文章,序列$x[n]$的傅里叶变换(实际上是DTFT,由于本书把它叫做序列的傅里叶变换,因此这里以及后面的文章也统一称DTFT为傅里叶变换)被定义为 $X(e^{j\omega}) = \displaystyle{ \sum_{n=-\infty}^{\infty ...
z逆变换的计算为下面的复数闭合曲线积分: x n displaystyle frac pi j oint C X z z n dz 式中 C 表示的是收敛域内的一条闭合曲线。该积分表达式可以利用复数变量理论下的柯西积分定理推导得到。不过本门课程用不上这条式子,因为在离散LTI系统分析中所遇到的典型序列和z变换,有如下更简单的z逆变换求解办法。 观察法 查表 下面是一个常见序列的z变换表格,通过查表 ...
2018-01-18 23:07 0 2042 推荐指数:
z变换及其收敛域 回顾前面的文章,序列$x[n]$的傅里叶变换(实际上是DTFT,由于本书把它叫做序列的傅里叶变换,因此这里以及后面的文章也统一称DTFT为傅里叶变换)被定义为 $X(e^{j\omega}) = \displaystyle{ \sum_{n=-\infty}^{\infty ...
要理解这节课的内容需要先对傅里叶变换有一定程度的了解,这里主要分析的是离散时间傅里叶变换,这部分算是从傅里叶变换到离散傅里叶变换的过渡内容。推荐阅读[傅里叶变换及其应用学习笔记] 课程概览中离散傅里叶变换开头的相关课程。 离散时间傅里叶变换 离散时间傅里叶变换(Discrete-Time ...
本文给出了离散时间信号与离散时间系统的基本定义,建立符号注释。 离散时间信号 离散时间信号的定义 离散时间信号在数学上表示成数的序列。如果以连续时间信号(函数)来进行对比,有: 一个函数$f$,该函数中的某一点$k$上的值记作$f(k)$。 一个数的序列$x$,该序列中 ...
频率响应 从复指数输入引入频率响应 对于一个LTI系统,如果输入为$x[n] = e^{j\omega n},-\infty<n<\infty$,那么输出为 $\begin{alig ...
多采样率信号处理一般是指利用增采样、减采样、压缩器和扩展器等方式来提高信号处理系统效率的技术(These multirate techniques refer in general to utilizing upsampling, downsampling, compressors ...
这一节主要讨论采样定理,在《傅里叶变换及其应用及其学习笔记》中有进行过推导与讲解,因此下面的内容也大同小异。不过如果是从《离散时间信号处理》这一本书的内容开始学习到这一节,则应先学习本文内容所需要的一些前置知识:傅里叶变换(连续时间),主要用到的是脉冲函数$\delta$,以及周期脉冲函数 ...
模拟信号的数字处理,就是用离散时间系统来处理连续时间信号。我们在连续时间信号的离散时间处理以及离散时间信号的连续时间处理中已经学习过连续时间信号的离散时间处理,不过那只是单纯从理想的数学角度进行最简略的分析,这一篇文章中我们将从现实角度对这一过程进行分析,其中会讨论实现这一系统所需的各个模块 ...
目录 3 滤波与褶积,Z变换 3.1 连续信号的滤波和褶积 3.2 离散信号的滤波和褶积 3.3 信号的能谱与能量等式,功率谱与平均功率等式 3.4 离散信号与频谱的简化表示 3.5 离散信号的Z变换 3.6 作为罗朗 ...