决策树在商品购买能力预测案例中的算法实现 作者:白宁超 2016年12月24日22:05:42 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷。然而多数是基础理论知识介绍,缺乏实现的深入理解。本系列文章是作者结合视频学习和书籍基础的笔记所得。本系列文章将采用理论结合实践方式 ...
阅读目录 目录 决策树 判定树 decision tree 构造决策树的基本算法:判定顾客对商品购买能力 基于python代码的决策树算法实现:预测顾客购买商品的能力 完整项目下载 决策树在商品购买能力预测案例中的算法实现 作者:白宁超 年 月 日 : : 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷。然而多数是基础理论知识介绍,缺乏实现的深入理解。本系列文章是作者结合视频学习和书籍基础的 ...
2018-01-18 16:33 0 2990 推荐指数:
决策树在商品购买能力预测案例中的算法实现 作者:白宁超 2016年12月24日22:05:42 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷。然而多数是基础理论知识介绍,缺乏实现的深入理解。本系列文章是作者结合视频学习和书籍基础的笔记所得。本系列文章将采用理论结合实践方式 ...
阅读目录 1. 决策树的模型 2. 决策树的基本知识 3. ID3、C4.5&CART 4. Random Forest 5. GBDT 6. 参考内容 谈完数据结构中的树(详情见参照之前博文《数据结构中各种树 ...
的“屠龙刀”的GBDT算法。 1. 决策树的模型 决策树是一种基本的分类与回归方法,它可以被认 ...
实现代码: 结果: 不同深度对预测的影响: 总结: 决策树分量算法有构造速度快、结构明显、分类精度高等优点。 决策树是以实例(Instance)为核心的归纳分类方法。 它从一组无序的、无特殊领域知识的数据集中提取出决策树表现形式的分类规则, 包含了分支节点、叶子 ...
题目:给定如下训练集和测试集,参考《机器学习》(Tom Mitchell)第三章和《机器学习》(周志华)第四章,先阅读ID3、C4.5和CART算法并且仔细阅读附件给出的ID3、C4.5算法python程序,再实现基于基尼指数(Gini index)选择最优划分属性(特征)构造的CART决策树 ...
决策树分类算法 1、概述 决策树(decision tree)——是一种被广泛使用的分类算法。 相比贝叶斯算法,决策树的优势在于构造过程不需要任何领域知识或参数设置 在实际应用中,对于探测式的知识发现,决策树更加适用。 2、算法思想 通俗来说,决策树分类的思想类似于找对象。现想象 ...
1 案例背景 泰坦尼克号沉没是历史上最臭名昭着的沉船之一。1912年4月15日,在她的处女航中,泰坦尼克号在与冰山相撞后沉没,在2224名乘客和机组人员中造成1502人死亡。这场耸人听闻的悲剧震惊了国际社会,并为船舶制定了更好的安全规定。 造成海难失事的原因之一是乘客和机组人员没有足够的救生艇 ...
什么是决策树? 决策树是一种基本的分类和回归方法。以分类决策树为例: 决策树通常包含哪三个步骤? 特征选择、决策树的生成和决策树的修剪 决策树与if-then规则? 直接以一个例子看看数如何构建决策树的: 根据不同的特征可以有不同的决策树: 那么如何从根节点开始选择 ...