确认显卡驱动正确安装: CUDA版本和Tensorflow版本有对应关系,TF2.0可以使用CUDA 10.1,安装TF2.0版本,查看conda 源中的TF : 一定要安装 gpu的build,指定build安装方法: 执行命令: 然后来执行python代码测试TF是否 ...
训练自己的数据集 以bottle为例 : 准备数据 下载官方预训练模型:https: github.com tensorflow models blob master research object detection g doc detection model zoo.md以ssd mobilenet v coco为例,将压缩包内model.ckpt 的三个文件复制到bottle内 准备jpg ...
2018-01-15 10:30 0 5144 推荐指数:
确认显卡驱动正确安装: CUDA版本和Tensorflow版本有对应关系,TF2.0可以使用CUDA 10.1,安装TF2.0版本,查看conda 源中的TF : 一定要安装 gpu的build,指定build安装方法: 执行命令: 然后来执行python代码测试TF是否 ...
本文已在公众号机器视觉与算法建模发布,转载请联系我。 使用TensorFlow的基本流程 本篇文章将介绍使用tensorflow的训练模型的基本流程,包括制作读取TFRecord,训练和保存模型,读取模型。 准备 语言:Python3 库:tensorflow、cv2 ...
首先检测TPU存在: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() #如果先前设置好了TPU_NAME环境变量,不需要再 ...
关于多gpu训练,tf并没有给太多的学习资料,比较官方的只有:tensorflow-models/tutorials/image/cifar10/cifar10_multi_gpu_train.py 但代码比较简单,只是针对cifar做了数据并行的多gpu训练,利用到的layer ...
数据集 DNN 依赖于大量的数据。可以收集或生成数据,也可以使用可用的标准数据集。TensorFlow 支持三种主要的读取数据的方法,可以在不同的数据集中使用;本教程中用来训练建立模型的一些数据集介绍如下: MNIST:这是最大的手写数字(0~9)数据库。它由 60000 个示例的训练集 ...
本节包含: 用纯文本文件准备训练数据 加载文件中的训练数据 一、用纯文本文件准备训练数据 1.数据的数字化 比如,“是” —— “1”,“否” —— “0” “优”,“中”,“差” —— 1 2 3 或者 3 2 1 2.训练数据的格式 在文本文件中,一般每行 ...
很多正在入门或刚入门TensorFlow机器学习的同学希望能够通过自己指定图片源对模型进行训练,然后识别和分类自己指定的图片。但是,在TensorFlow官方入门教程中,并无明确给出如何把自定义数据输入训练模型的方法。现在,我们就参考官方入门课程《Deep MNIST for Experts》一节 ...
tensorflow中使用mnist数据集训练全连接神经网络 ——学习曹健老师“人工智能实践:tensorflow笔记”的学习笔记, 感谢曹老师 前期准备:mnist数据集下载,并存入data目录: 文件列表:四个文件,分别为训练和测试集数据 Four files ...