1、积性函数:对于函数$f(n)$,若满足对任意互质的数字a,b,a*b=n且$f(n)=f(a)f(b)$,那么称函数f为积性函数。显然f(1)=1。 2、狄利克雷卷积:对于函数f,g,定义它们的卷积为$(f*g)(n)=\sum_{d|n}f(d)g(\frac{n}{d})$。 3、两个积性 ...
一些性质 积性函数:对于函数 f n ,若满足对任意互质的数字 a,b,a b n 且 f n f a f b ,那么称函数f为积性函数。 狄利克雷卷积:对于函数f,g,定义它们的卷积为 f g n sum d n f d g frac n d 。 狄利克雷卷积满足很多性质: 交换律: f g g f 结合律: f g h f g h 两个积性函数的狄利克雷卷积仍为积性函数。 积性函数都可以用线性 ...
2018-01-11 14:49 5 1620 推荐指数:
1、积性函数:对于函数$f(n)$,若满足对任意互质的数字a,b,a*b=n且$f(n)=f(a)f(b)$,那么称函数f为积性函数。显然f(1)=1。 2、狄利克雷卷积:对于函数f,g,定义它们的卷积为$(f*g)(n)=\sum_{d|n}f(d)g(\frac{n}{d})$。 3、两个积性 ...
积性函数与线性筛 update 1-17 新增:线性筛约数个数、线性筛约数和 积性函数 若一个定义在正整数域上的函数\(f(x)\)对于任意满足\(\gcd(x,y)==1\)的\(x,y\)都有\(f(xy)=f(x)*f(y)\),则\(f(x)\)是积性函数。 常见积性函数 ...
前置知识 数论函数及相关基本定义 素数的线性筛 线性筛 线性筛可以在严格$O(n)$的时间内筛出积性函数的值, 它有常见的套路 假设$n = p_1^{a_1} p_2^{a_2} \dots p_k^{a_k}$ 如果我们能快速得出$f(p_i)$和$f(p_i^{k+1 ...
不定期更新的说呢... 积性函数 积性函数的概念: 如果一个函数 \(f(n)\) 在 \(a,b\) 互质的情况下满足 \(f(a*b)=f(a)*f(b)\), 则称其为积性函数 举例: \(φ(n)\) —— 欧拉函数 ! \(σ(n)\) —— 约数和函数 \(μ(n ...
数论入门1 一个菜鸡对数论的一点点理解... 莫比乌斯函数 定义函数\(\mu(n)\)为: 当n有平方因子时,\(\mu(n)=0\)。 当n没有平方因子时,\(\mu(n)=(-1)^{\omega(n)}\),\(\omega(n)\)表示n不同质因子的个数。 性质 ...
1.基本概念 约翰·彼得·古斯塔夫·勒热纳·狄利克雷(1805-1859),德国数学家,创立了现代函数的正式定义。 狄利克雷提出了一个非常古怪的函数,叫做狄利克雷函数,专门有个符号D(X)来表示: 特点: 狄利克雷函数,因为无理数、有理数的混杂,所以函数值也是 ...
定义出莫比乌斯函数的人似乎对容斥原理有了高深的造诣。这里从狄利克雷卷积(\(Dirichlet\)卷积 ...
先放上板题 BZOJ3944 洛谷P4213 嗯,杜教筛解决的就是这样一个丧心病狂的前缀和 \(O(N)\)都会T。。 积性函数## 如果一个数论函数\(f(n)\),满足若\(m,n\)互质,那么有\(f(n * m) = f(n) * f(m)\),那么称\(f(n)\)为积性函数 ...