1. 基本思想 局部敏感(Locality Senstitive):即空间中距离较近的点映射后发生冲突的概率高,空间中距离较远的点映射后发生冲突的概率低。 局部敏感哈希的基本思想类似于一种空间域转换思想,LSH算法基于一个假设,如果两个文本在原有的数据空间是相似的,那么分别经过哈希函数转换以后 ...
在对大批量数据进行图像处理的时候,比如说我提取SIFT特征,数据集为 W张图片,一个SIFT特征点是 维,一张图片提取出 个特征点,这样我们在处理的时候就是对 万个 维的数据进行处理,这样处理所需要的耗时太长了,不符合实际生产的需要。我们需要用一种方法降低运算量,比如说降维。 看了一些论文,提到的较多的方法是LSH Locality Sensitive Hash ,就是局部敏感哈希。我们利用LS ...
2018-01-07 14:30 2 1592 推荐指数:
1. 基本思想 局部敏感(Locality Senstitive):即空间中距离较近的点映射后发生冲突的概率高,空间中距离较远的点映射后发生冲突的概率低。 局部敏感哈希的基本思想类似于一种空间域转换思想,LSH算法基于一个假设,如果两个文本在原有的数据空间是相似的,那么分别经过哈希函数转换以后 ...
1. 引言 - 近似近邻搜索被提出所在的时代背景和挑战 0x1:从NN(Neighbor Search)说起 ANN的前身技术是NN(Neighbor Search),简单地说,最近邻检索就是根据 ...
一、概述 近邻搜索在计算机科学中是一个非常基础的问题,在信息检索、模式识别、机器学习、聚类等领域有着广泛的应用。如果在d维空间中,我们有n个数据点,采用暴力搜索寻找最近邻的时间复杂度为O(dn ...
1、概念 2、LSH操作 我们描述了LSH可以用于的主要操作类型。拟合的LSH模型具有用于每个操作的方法。 2.1、Feature Transformation 特征转换 2.2、Approximate ...
1. 概述 LSH是由文献[1]提出的一种用于高效求解最近邻搜索问题的Hash算法。LSH算法的基本思想是利用一个hash函数把集合中的元素映射成hash值,使得相似度越高的元素hash值相等的概率也越高。LSH算法使用的关键是针对某一种相似度计算方法,找到一个具有以上描述特性的hash函数 ...
局部敏感哈希(Locality-Sensitive Hashing, LSH)方法介绍 本文主要介绍一种用于海量高维数据的近似最近邻快速查找技术——局部敏感哈希(Locality-Sensitive Hashing, LSH),内容包括了LSH的原理、LSH哈希函数集、以及LSH的一些 ...
一、 前言 最近在工作中需要对海量数据进行相似性查找,即对微博全量用户进行关注相似度计算,计算得到每个用户关注相似度最高的TOP-N个用户,首先想到的是利用简单的协同过滤,先定义相似性度量( ...
(Locality Sensitive Hashing,LSH)算法是我在前一段时间找工作时接触到的一 ...