计算频繁项集: 首先生成一个数据集 def loadDataSet(): return [[1, 3, 4], [2, 3, 5], [1, 2, 3, 5], [2, 5]] def ...
频繁项集 gt 产生强关联规则的过程 .由Apriori算法 当然别的也可以 产生频繁项集 .根据选定的频繁项集,找到它所有的非空子集 .强关联规则需要满足最小支持度和最小置性度 假设关联规则是:A gt B , support A gt B P AUB confidence A gt B P B A P AUB P A 。这里求概率都可以替换为求支持度计数 就是统计在源数据表中各个出现的次数,例 ...
2018-01-05 10:48 1 3874 推荐指数:
计算频繁项集: 首先生成一个数据集 def loadDataSet(): return [[1, 3, 4], [2, 3, 5], [1, 2, 3, 5], [2, 5]] def ...
频繁模式和对应的关联或相关规则在一定程度上刻画了属性条件与类标号之间的有趣联系,因此将关联规则挖掘用于分类也会产生比较好的效果。关联规则就是在给定训练项集上频繁出现的项集与项集之间的一种紧密的联系。其中“频繁”是由人为设定的一个阈值即支持度 (support)来衡量,“紧密”也是由人为设定的一个 ...
需要扫描多个事物数据集,增加IO开销。会产生2的k次方频繁项集。 ...
(关联规则)三个 求频繁项集: 对于如表5.5所示的事务集合,设最小支持度计数为3,采用Apr ...
频繁项集的产生 格结构(lattice structure)常常用来表示所有可能的项集。 发现频繁项集的一个原始方法是确定格结构中每个候选项集的支持度。但是工作量比较大。另外有几种方法可以降低产生频繁项集的计算复杂度。 减少候选项集的数目。如先验(apriori)原理,是一种不用 ...
关联分析 概述 关联分析是数据挖掘的核心技术之一,其关联规则模型及数据挖掘算法是由 IBM 公司Almaden研究中心的R.Agrawal在1993年首先提出的,目的是从大量数据中发现项集之间的有趣关联或相互关系,其中最经典的Apriori算法在关联规则分析领域具有很大的影响力。 1.项集 ...
前言: 关联规则是数据挖掘中最活跃的研究方法之一, 是指搜索业务系统中的所有细节或事务,找出所有能把一 组事件或数据项与另一组事件或数据项联系起来的规则,以获 得存在于数据库中的不为人知的或不能确定的信息,它侧重于确 定数据中不同领域之间的联系,也是在无指导学习系统中挖掘本地模式的最普通形式 ...
关联规则:评定规则的标准 支持度:规则前项LHS和规则后项RHS所包括的商品都同时出现的概率,LHS和RHS商品的交易次数/总交易次数。 置信度:在所有的购买了左边商品的交易中,同时又购买了右边商品的交易机率,包含规则两边商品的交易次数/包括规则左边商品的交易次数。 提升度(有这个规则 ...