1、数据来源 (1)数据来源 来自kaggle的数据集Titanic:Titanic: Machine Learning from Disaster train文档数据是用来分析和建模,包含有生存情况信息;test数据是用来最终预测其生存情况并生成结果文件。 2、分析流程 (1)不同变量 ...
原文地址如下: https: www.kaggle.com startupsci titanic data science solutions 泰坦尼克数据科学解决方案: . 工作流程步骤: 在 Data Science Solutions book 这本书里,描述了在解决一个竞赛问题时所需要做的具体工作流程: 问题的定义 获取训练数据以及测试数据 加工 准备以及清洗数据 分析 识别数据的模式,并 ...
2018-01-03 20:36 0 3040 推荐指数:
1、数据来源 (1)数据来源 来自kaggle的数据集Titanic:Titanic: Machine Learning from Disaster train文档数据是用来分析和建模,包含有生存情况信息;test数据是用来最终预测其生存情况并生成结果文件。 2、分析流程 (1)不同变量 ...
也不知道对不对,就凭着自己的思路写了一个 数据集:https://www.kaggle.com/c/titanic/data 效果一般吧,不过至少出来了,hiahiahia ...
2021.3.11补充: 官网地址:https://xgboost.readthedocs.io/en/latest/python/python_api.html DMatrix 是XGBoost中使用的数据矩阵。DMatrix是XGBoost使用的内部数据结构,它针对内存效率和训练速度 ...
缺失值处理 真实数据往往某些变量会有缺失值。 首先,我们用 info( ) 语句操作,看到整份数据的大概情况: titanic_df.info() 从这份数据我们可以发现,这里一共有 891 行数据,所以在中间那一列数据中看到的不是 891 个数据的,都是有缺失值的。比如年龄Age ...
概述 1912年4月15日,泰坦尼克号在首次航行期间撞上冰山后沉没,2224名乘客和机组人员中有1502人遇难。沉船导致大量伤亡的原因之一是没有足够的救生艇给乘客和船员。虽然幸存下来有一些运气因素,但有一些人比其他人更有可能生存,比如妇女,儿童和上层阶级。在本文中将对哪些人 ...
前言 这个是Kaggle比赛中泰坦尼克号生存率的分析。强烈建议在做这个比赛的时候,再看一遍电源《泰坦尼克号》,可能会给你一些启发,比如妇女儿童先上船等。所以是否获救其实并非随机,而是基于一些背景有先后顺序的。 1,背景介绍 1912年4月15日,载着1316号乘客和891名船员的豪华 ...
Kaggle 是一个流行的数据科学竞赛平台 一、机器学习的基本步骤 二、提出问题 什么样的人更容易生存? 三、理解数据 3.1数据来源 https://www.kaggle.com/c/titanic 分为 训练集:train.csv,891条数据 测试 ...