一、定义 一棵二叉查找树是一棵二叉树,每个节点都含有一个Comparable的键(以及对应的值)。 每个节点的键都大于左子树中任意节点的键而小于右子树中任意节点的键。 每个节点都有两个链接,左链接、右链接,分别指向自己的左子节点和右子节点,链接也可以指向null。 尽管链接指向 ...
二叉查找树 总结: 节点的定义中 a. 左右孩子用指针定义,类似于int left,因为结构体本身就是一种自定义类型,struct BSTreeNode看成系统的类型int不过分。 b. 用了typedef重定义类型,给struct BSTreeNode起了两个别名Node和 BSTree。 c. 其中的 BSTree起始就相当于 typedef int m中的 m。 创建节点中 a. 用了mal ...
2018-01-03 19:31 0 3370 推荐指数:
一、定义 一棵二叉查找树是一棵二叉树,每个节点都含有一个Comparable的键(以及对应的值)。 每个节点的键都大于左子树中任意节点的键而小于右子树中任意节点的键。 每个节点都有两个链接,左链接、右链接,分别指向自己的左子节点和右子节点,链接也可以指向null。 尽管链接指向 ...
在上一篇中,我们说到了二叉树的性质,存储以及定义的结点,有了这些之后,我们便可以来创建一棵二叉查找树了。 首先,我们知道,按照我们定义的存储结构,如果我们知道了整棵树的根结点,那么我们就可以访问到整棵树的所有结点了,因此,将二叉树的类写成如下形式: 代码里边包含一个 ...
接上一篇,继续讲二叉查找树的操作,之前的博客都讲得差不多了,本篇就讲一下删除操作,以及求最矮公共父结点(LCA:lowest common ancestor)的操作吧。 删除 将一个结点从二叉查找树中删除之后,剩下的结点可能会不满足二叉查找树的性质,因此,在删除结点之后要对树 ...
在文章《常用数据结构及复杂度》中,介绍了一些计算机程序设计中常用的线性数据结构,包括 Array、ArrayList、LinkedList<T>、List<T>、Stack&l ...
我们知道二叉查找树是一种数据结构,它支持多种动态集合的操作,包括:查询,最大值,最小值,前驱,后继,插入和删除等操作。那么我们在前一篇已经创建了二叉查找树,那么我们来实现二叉查找树的各种操作吧。(*^__^*) (以下纯属个人理解,个人原创,理解不当的地方,请指正,谢谢) 我们来看二叉 ...
接上一篇,让我们来继续讨论二叉查找树的基本操作,需要注意的一点是,上篇中的遍历操作是针对任意一棵二叉树都可以的,凡是没提及需要二叉查找树性质的地方,应该都是满足二叉树的操作。上篇主要讨论了二叉树的遍历操作,这篇,我们来讨论二叉查找树的查找、求最大最小值以及求前驱和后继等操作。 查找 ...
二叉查找树的特点: 在二叉查找树中左子树上所有结点的数据都小于等于根结点的数据,而右子树上所有结点的数据都大于根结点的数据 二叉查找树的删除 一般有两种常见做法,时间复杂度都是$O(h)$,h是二叉查找树的高度。为了保证删除之后仍然是二叉查找树。 一种方法是以树中比删去数小 ...
我们都知道Dictionary<TKey, TValue>查找元素非常快,其实现原理是:将你TKey的值散列到数组的指定位置,将TValue的值存入对应的位置, 由于取和存用的是同一个算法,所以就很容易定位到TValue的位置,花费的时间基本上就是实现散列算法的时间,跟其中元 ...