for Weakly-Supervised Semantic Segmentation. NIPS, 2020 ...
论文题目是STC,即Simple to Complex的一个框架,使用弱标签 image label 来解决密集估计 语义分割 问题。 年末以来,半监督的语义分割层出不穷,究其原因还是因为pixel级别的GroundTruth太难标注,因此弱监督成了人们研究的一个热门方向。 作者的核心思想是提出了层层递进的三个DCNN。 具体来讲,作者一共训练了三个网络:Initial DCNN Enhanced ...
2018-01-02 16:02 0 1810 推荐指数:
for Weakly-Supervised Semantic Segmentation. NIPS, 2020 ...
这篇文章的主要贡献点在于: 1.实验证明仅仅利用图像整体的弱标签很难训练出很好的分割模型; 2.可以利用bounding box来进行训练,并且得到了较好的结果,这样可以代替用pixel-leve ...
Is object localization for free? –Weakly-supervised learning with convolutional neural networks. Maxime Oquab, Leon Bottou, Ivan Laptev, Josef ...
论文地址:https://arxiv.org/abs/2105.15203 1 引言 文章提出了一种基于transformer的语义分割网络,不同于ViT模型,SegFormer使用一种分层特征表示的方法,每个transformer层的输出特征尺寸逐层递减,通过这种方式捕获不同尺度的特征信息 ...
图森和CMU的合作工作。 论文链接[https://arxiv.org/abs/1702.08502](https://arxiv.org/abs/1702.08502) 主要提出DUC(dense upsampling convolution)和HDC(hybrid dilated ...
论文地址:https://arxiv.org/abs/2105.05633 1 引言 图像语义分割在单个图像块级别通常表现得比较模糊,文章提出了一种基于tansformer的语义分割模型,可以在网络传播过程中建模全局上下文信息。其网络结构是在ViT模型的基础上进行扩展,以适应语义分割任务 ...
论文简介: 以image-level作为标签的弱监督语义分割往往面临目标区域估计不完整的问题。为了缓解这个问题,本文提出了一种对跨图像间关系进行建模的方法。 该方法在同类别不同图像之间建立像素级的关系矩阵,并据此从不同的图像间取得互相补充的信息,用以增广原特征并获取更加完整和鲁棒的目标估计 ...
paper: Object-Contextual Representations for Semantic Segmentation code: PyTorch Abstract OCR是MSRA和中科院的一篇语义分割工作,结合每一类的类别语义信息给每个像素加权,再和原始的pixel ...