目录 梯度下降法 机器学习中的梯度下降法 最速下降法 二次型目标函数 牛顿法 Levenberg-Marquardt 修正 梯度下降法和牛顿法谁快? 共轭方向法 ...
拟牛顿法 拟牛顿法是求解非线性优化问题最有效的方法之一。DFP BFGS L BFGS算法都是重要的拟牛顿法。 求函数的根 对f x 在Xn附近做一阶泰勒展开 f x f Xn f Xn x Xn 假设Xn 是该方程的根 那么就得到 Xn Xn f Xn f Xn 通过不断迭代从而得到真正的函数的根X 最优化问题 牛顿法 即是对一阶导函数求其函数的根。因此里面要涉及到求二阶导 显然这里求最优点X ...
2017-12-23 15:23 0 3224 推荐指数:
目录 梯度下降法 机器学习中的梯度下降法 最速下降法 二次型目标函数 牛顿法 Levenberg-Marquardt 修正 梯度下降法和牛顿法谁快? 共轭方向法 ...
故事继续从选定方向的选定步长讲起 首先是下降最快的方向 -- 负梯度方向衍生出来的最速下降法 最速下降法 顾名思义,选择最快下降。包含两层意思:选择下降最快的方向,在这一方向上寻找最好的步长。到达后在下一个点重复该步骤。定方向 选步长 前进... 优化问题的模型:\(min f ...
1.最速下降方向 函数f(x)在点x处沿方向d的变化率可用方向导数来表示。对于可微函数,方向导数等于梯度与方向的内积,即: Df(x;d) = ▽f(x)Td, 因此,求函数f(x)在点x处的下降最快的方向,可归结为求解下列非线性规划: min ▽f(x)Td s.t. ||d ...
norm(A,p)当A是向量时norm(A,p) Returns sum(abs(A).^zhip)^(/p), for any <= p <= ∞.norm(A) Returns nor ...
梯度下降法是沿着梯度下降的算法,该算法的收敛速度受梯度大小影响非常大,当梯度小时算法收敛速度非常慢。 牛顿法是通过把目标函数做二阶泰勒展开,通过求解这个近似方程来得到迭代公式,牛顿法的迭代公式中用到了二阶导数来做指导,所以牛顿法的收敛速度很快,但是由于要求二阶导,所以牛顿法的时间复杂度非常高 ...
最速下降法(Python实现) 使用最速下降法方向,分别使用Armijo准则和Wolfe准则来求步长 求解方程 \(f(x_1,x_2)=(x_1^2-2)^4+(x_1-2x_2)^2\)的极小值 运行结果: ...
function x = fxsteep(f,e,a,b)x1 = a;x2 = b;Q = fxhesson(f,x1,x2);x0 = [x1,x2]';temp = [x0];fx1 = ...
算法原理 to-do Matlab代码 代码问题 Matlab符号运算,耗时 最速下降法的步长使用line-search,耗时 代码改进 ...