摘要: RDD:弹性分布式数据集,是一种特殊集合 ‚ 支持多种来源 ‚ 有容错机制 ‚ 可以被缓存 ‚ 支持并行操作,一个RDD代表一个分区里的数据集 RDD有两种操作算子: Transformation(转换):Transformation ...
原文引自:http: blog.csdn.net xiefu hh article details SPARK的核心就是RDD,对SPARK的使用入门也就是对RDD的使用,对于JAVA的开发者,Spark的RDD对JAVA的API我表示很不能上手,单单看文档根本是没有办法理解每个API的作用的,所以每个SPARK的新手,最好按部就班直接学习scale,那才是一个高手的必经之路,但是由于项目急需使用 ...
2017-12-22 15:25 0 2712 推荐指数:
摘要: RDD:弹性分布式数据集,是一种特殊集合 ‚ 支持多种来源 ‚ 有容错机制 ‚ 可以被缓存 ‚ 支持并行操作,一个RDD代表一个分区里的数据集 RDD有两种操作算子: Transformation(转换):Transformation ...
摘要: RDD:弹性分布式数据集,是一种特殊集合 ‚ 支持多种来源 ‚ 有容错机制 ‚ 可以被缓存 ‚ 支持并行操作。 RDD有两种操作算子: Transformation(转换):Transformation属于延迟计算,当一个RDD转换成另一 ...
摘要: RDD:弹性分布式数据集,是一种特殊集合 ‚ 支持多种来源 ‚ 有容错机制 ‚ 可以被缓存 ‚ 支持并行操作,一个RDD代表一个分区里的数据集RDD有两种操作算子: Transformation(转换):Transformation属于延迟计算,当一个RDD ...
0.spark简介 Spark是整个BDAS的核心组件,是一个大数据分布式编程框架,不仅实现了MapReduce的算子map 函数和reduce函数及计算模型,还提供更为丰富的算子,如filter、join、groupByKey等。是一个用来实现快速而同用的集群计算的平台 ...
Data streaming转为DataFrame,不能直接一步转到DF,需要先转为RDD,然后再转到DF,我们用流式处理数据后,再通过spark sql实时获取我们想要的结果。 1.首先老规矩,创建spark上下文对象,spark SQL和spark Streaming,再创建个socket ...
#构造case class,利用反射机制隐式转换 scala> import spark.implicits._ scala> val rdd= sc.textFile("input/textdata.txt") scala> case class Person(id ...
SparkContext可以通过parallelize把一个集合转换为RDD def main(args: Array[String]): Unit = { val conf = new SparkConf(); val list = List ...
RDD算子分为两类:Transformation和Action,如下图,记住这张图,走遍天下都不怕。 Transformation:将一个RDD通过一种规则映射为另外一个RDD。 Action:返回结果或保存结果。 注意:只有action才触发程序的执行 ...