原文地址:http://ghx0x0.github.io/2014/12/30/NDT-match/ By GH 发表于 12月 30 2014 目前三维配准中用的较多的是ICP迭代算法,需要提供一个较好的初值,同时由于算法本身缺陷,最终迭代结果可能会陷入局部最优。本文介绍的是另一种比较好 ...
正态分布变换 NDT 算法是一个配准算法,它应用于三维点的统计模型,使用标准最优化技术来确定两个点云间的最优的匹配,因为其在配准过程中不利用对应点的特征计算和匹配,所以时间比其他方法快。下面的公式推导和MATLAB程序编写都参考论文:The Normal Distributions Transform: A New Approach to Laser Scan Matching 先回顾一下算法推 ...
2017-12-18 14:54 4 10225 推荐指数:
原文地址:http://ghx0x0.github.io/2014/12/30/NDT-match/ By GH 发表于 12月 30 2014 目前三维配准中用的较多的是ICP迭代算法,需要提供一个较好的初值,同时由于算法本身缺陷,最终迭代结果可能会陷入局部最优。本文介绍的是另一种比较好 ...
本篇文章主要介绍下Xgboost算法的原理和公式推导。关于XGB的一些应用场景在此就不赘述了,感兴趣的同学可以自行google。下面开始: 1.模型构建 构建最优模型的方法一般是最小化训练数据的损失函数,用L表示Loss Function(),F是假设空间: \[L = min_ ...
Generative Adversarial Network,就是大家耳熟能详的 GAN,由 Ian Goodfellow 首先提出,在这两年更是深度学习中最热门的东西,仿佛什么东西都能由 GAN 做出来。我最近刚入门 GAN,看了些资料,做一些笔记。 可以参考另一篇,GAN原理 ...
上一篇讲了FM(Factorization Machines),今天说一说FFM(Field-aware Factorization Machines )。 回顾一下FM: \begin{equa ...
正态分布变换算法是一个配准算法,它应用于三维点的统计模型,使用标准优化技术来确定两个点云间的最优的匹配,因为其在配准过程中不利用对应点的特征计算和匹配,所以时间比其他方法快。下面是PCL官网上的一个例子,使用NDT配准算法将两块激光扫描数据点云匹配到一起。 先下载激光扫描数据集 ...
AdaBoost(Adaptive Boosting):自适应提升方法。 1、AdaBoost算法介绍 AdaBoost是Boosting方法中最优代表性的提升算法。该方法通过在每轮降低分对样例的权重,增加分错样例的权重,使得分类器在迭代过程中逐步改进,最终将所有分类器线性组合得到最终分类器 ...
转自http://blog.csdn.net/v_july_v/article/details/40718799 Adaboost 算法的原理与推导 0 引言 一直想写Adaboost来着,但迟迟未能动笔。其算法思想虽然简单:听取多人意见,最后综合决策,但一般书上对其算法 ...
1. 简介 2. 计算过程 3. 权重偏置更新公式推导 4. BP神经网络优劣势 1. 简介 BP(back propagation)神经网络是1986年由Rumelhart和McClelland为首的科学家提出的概念,是一种 ...