利用pytorch 定义自己的网络模型时,需要继承toch.nn.Module 基类。 基类中有parameters()、modules()、children()等方法 看一下parameters方法 看一下modules()方法 看一下 ...
from:http: blog.csdn.net VictoriaW article details 之前我学习了神经网络中权值初始化的方法 那么如何在pytorch里实现呢。 PyTorch提供了多种参数初始化函数: torch.nn.init.constant tensor, val torch.nn.init.normal tensor, mean , std torch.nn.init.x ...
2017-12-14 14:33 0 16702 推荐指数:
利用pytorch 定义自己的网络模型时,需要继承toch.nn.Module 基类。 基类中有parameters()、modules()、children()等方法 看一下parameters方法 看一下modules()方法 看一下 ...
为什么要进行初始化 首先假设有一个两层全连接网络,第一层的第一个节点值为 \(H_{11}= \sum_{i=0}^n X_i*W_{1i}\), 这个时候,方差为 \(D(H_{11}) = \sum_{i=0}^n D(X_i) * D(W_{1i})\), 这个时候,输入\(X_i ...
有时间再写。 ...
一、使用Numpy初始化:【直接对Tensor操作】 对Sequential模型的参数进行修改: 对Module模型 的参数初始化: 对于 Module 的参数初始化,其实也非常简单,如果想对其中的某层进行初始化,可以直接 ...
1.使用apply() 举例说明: Encoder :设计的编码其模型 weights_init(): 用来初始化模型 model.apply():实现初始化 返回: 2.直接在定义网络时定义 然后调用即可 ...
在定义网络时,pythorch会自己初始化参数,但也可以自己初始化,详见官方实现 ...
PyTorch参数初始化和Finetune reference: https://zhuanlan.zhihu.com/p/25983105 ...
深度学习: 参数初始化 一、总结 一句话总结: 1)、好的开始是成功的一半,为了让你的模型跑赢在起跑线 ,请慎重对待参数初始化。 2)、tf的初始化器包括:tf.initializers.he_normal()、tf.initializers.truncated_normal ...