title: 【学习笔记】从单位根到FFT date: 2019-02-19 11:26:08 tags: - 多项式基础 top: 6009 categories: - 学习笔记 - 多项式 青春的回忆啊… Preface 这篇文章初写于 $ 7/1/2018 ...
BZOJ 快速傅立叶变换之二 题意 给出两个长为 n 的数组 a 和 b , c k sum i k n a i b i k 。 题解 我们要把这个式子转换成多项式乘法的形式。 一个标准的多项式乘法是这样的: c k sum i k a i b k i 来看看原式: c k sum i k n a i b i k 将a翻转得到a : c k sum i k n a n i b i k 调整求和指标 ...
2017-12-13 14:38 0 1325 推荐指数:
title: 【学习笔记】从单位根到FFT date: 2019-02-19 11:26:08 tags: - 多项式基础 top: 6009 categories: - 学习笔记 - 多项式 青春的回忆啊… Preface 这篇文章初写于 $ 7/1/2018 ...
多项式 系数表示法 设\(f(x)\)为一个\(n-1\)次多项式,则 \(f(x)=\sum\limits_{i=0}^{n-1}a_i*x^i\) 其中\(a_i\)为\(f(x)\)的系数 ...
),从而大幅提升算法的效率。此求值算法将被应用于FFT算法中。 一、多项式求值 首先,由lagr ...
因寻求更加快速的解法。 对于任何一个N位的整数都可以看作是An*10^(n-1) + An-1* ...
实数DFT,复数DFT,FFTFFT是计算DFT的快速算法,但是它是基于复数的,所以计算实数DFT的时候需要将其转换为复数的格式,下图展示了实数DFT和虚数DFT的情况,实数DFT将时域中N点信号转换成2个(N/2+1)点的频域信号,其中1个(N/2+1)点的信号称之为实部,另一个(N/2+1)点 ...
背景: 无意间看到cuda解决FFT有一个cufft函数库,大体查看了有关cufft有关知识,写了一个解决一维情况的cuda代码,据调查知道cufft在解决1D,2D,3D的情况时间复杂度都为O(nlogn),附上解决一维情况的代码,准备后面找一些详细的资料去学习一下cuda的函数库 ...
写在最前面:本文是我阅读了多篇相关文章后对它们进行分析重组整合而得,绝大部分内容非我所原创。在此向多位原创作者致敬!!!一、傅立叶变换的由来关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难 ...
题目链接 3122. 多项式乘法同P3803 【模板】多项式乘法(FFT) 3122. 多项式乘法 题目描述 给定一个 \(n\) 次多项式 \(F(x)=a_0+a_1x+a_2x_2+…+a_nx_n\)。 以及一个 \(m\) 次多项式 \(G(x ...