原文:机器学习评价方法 - Recall & Precision

刚开始看这方面论文的时候对于各种评价方法特别困惑,还总是记混,不完全统计下,备忘。 关于召回率和精确率,假设二分类问题,正样本为x,负样本为o: 准确率存在的问题是当正负样本数量不均衡的时候: 精心设计的分类器最后算准确率还不如直接预测所有的都是正样本。 用Recall和Precision来衡量分类效果,可以使用F Score PR P R 来判断分类效果。 调整分类器,移动到这里: Recall ...

2017-12-12 12:31 0 3509 推荐指数:

查看详情

机器学习--如何理解Accuracy, Precision, Recall, F1 score

当我们在谈论一个模型好坏的时候,我们常常会听到准确率(Accuracy)这个词,我们也会听到"如何才能使模型的Accurcy更高".那么是不是准确率最高的模型就一定是最好的模型? 这篇博文会向大家解 ...

Fri Feb 28 03:55:00 CST 2020 0 3761
【深度学习PrecisionRecall 评价指标理解

1. 四种情况 Precision精确率, Recall召回率,是二分类问题常用的评价指标。混淆矩阵如下: T和F代表True和False,是形容词,代表预测是否正确。 P和N代表Positive和Negative,是预测结果。 预测结果为阳性 ...

Thu Jul 25 16:02:00 CST 2019 7 5424
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM