许多商业企业运营中的大量数据,通常称为购物篮事务(market basket transaction)。表中每一行对应一个事务,包含一个唯一标识TID。 利用关联分析的方法可以发现联系如关联规则或频繁项集。 关联分析需要处理的关键问题: 从大型事务数据集中发现模式可能在计算上要付出很高 ...
一.基本概念 我们来看上面的事务库,如同上表所示的二维数据集就是一个购物篮事务库。该事物库记录的是顾客购买商品的行为。这里的TID表示一次购买行为的编号,items表示顾客购买了哪些商品。 事务: 事务库中的每一条记录被称为一笔事务。在上表的购物篮事务中,每一笔事务都表示一次购物行为。 项集 T : 包含 个或者多个项的集合称为项集。在购物蓝事务中,每一样商品就是一个项,一次购买行为包含了多个项, ...
2017-12-11 11:28 0 1851 推荐指数:
许多商业企业运营中的大量数据,通常称为购物篮事务(market basket transaction)。表中每一行对应一个事务,包含一个唯一标识TID。 利用关联分析的方法可以发现联系如关联规则或频繁项集。 关联分析需要处理的关键问题: 从大型事务数据集中发现模式可能在计算上要付出很高 ...
我计划整理数据挖掘的基本概念和算法,包括关联规则挖掘、分类、聚类的常用算法,敬请期待。今天讲的是关联规则挖掘的最基本的知识。 关联规则挖掘在电商、零售、大气物理、生物医学已经有了广泛的应用,本篇文章将介绍一些基本知识和Aprori算法。 啤酒与尿布的故事已经成为了关联规则挖掘的经典案例 ...
挖掘频繁模式、关联和相关性:基本概念和方法 频繁模式(frequent pattern)是频繁地出现在数据集中的模式(如项集、子序列或子结构)。 例如,频繁地同时出现在交易数据集中的商品(如牛奶和面包)的集合是频繁项集。 一个子序列,如首先购买PC,然后是数码相机,再后是内存卡,如果它频繁 ...
一、概念 关联(Association) 关联就是把两个或两个以上在意义上有密切联系的项组合在一起。 关联规则(AR,Assocaition Rules) 用于从大量数据中挖掘出有价值的数据项之间的相关关系。(购物篮分析) 协同过滤(CF,Collaborative Filtering ...
问题:数据总量爆炸式增加,如何从中提取真正有价值的信息,产生了新的领域(DM)。几个名词: 1)Data Mining:数据挖掘 2)Knowledge Discovery:知识发现 3)Machine Learning:机器学习(机器学习是数据挖掘的一个重要工具 ...
下图摘自:http://blog.163.com/qianshch@126/blog/static/48972522201092254141315/ 主要的聚类方法可以划 ...
子图模式 频繁子图挖掘(frequent subgraph mining):在图的集合中发现一组公共子结构。 图和子图 图是一种用来表示实体集之间联系的数据结构。 子图,图\(G' = (V', E')\)是另一个图\(G = (V, E)\)的子图,如果它的顶点集V'是V的子集 ...
规则产生 忽略那些前件和后件为空的规则,每个频繁k项集能够产生\(2(2^k-1)\)个关联规则。将频繁项集Y划分为两个非空子集X和Y-X,使得\(X \to Y-X\)能满足置信度阈值,就可以得到满足条件的规则。 在计算规则的置信度时并不需要再次扫描事务数据集,因为产生规则的频繁项集和它 ...