成本函数(cost function)也叫损失函数(loss function),用来定义模型与观测值的误差。模型预测的价格与训练集数据的差异称为残差(residuals)或训练误差(test errors)。 我们可以通过残差之和最小化实现最佳拟合,也就是说模型预测的值与训练集的数据 ...
第一页纸定义了损失函数的样子, theta, X 和 y 的 shape, 以及最终的损失函数向量表现形式 第二页纸抄上了几个要用到的矩阵求导公式,以及推导过程和结果 要说明的是:推导结果与theta, X 和 y 的 shape有直接关系 也就是说可能和某教材,某大牛教学视频的结论外貌上不一致,但实质完全相同 ...
2017-12-10 12:49 1 1913 推荐指数:
成本函数(cost function)也叫损失函数(loss function),用来定义模型与观测值的误差。模型预测的价格与训练集数据的差异称为残差(residuals)或训练误差(test errors)。 我们可以通过残差之和最小化实现最佳拟合,也就是说模型预测的值与训练集的数据 ...
) = WTX 2. 目标函数:L2-norm 损失(均方误差损失) 3. 寻优:梯度下降(迭代)或 最 ...
1. 前言 线性回归形式简单、易于建模,但却蕴涵着机器学习中一些重要的基本思想。许多功能更为强大的非线性模型(nonlinear model)可在线性模型的基础上通过引入层级结构或高维映射而得。此外,由于线性回归的解\(\theta\)直观表达了各属性在预测中的重要性,因此线性回归有很好的可解释 ...
背景 学习 Linear Regression in Python – Real Python,对 regression 一词比较疑惑. 这个 linear Regression 中的 Regression 是什么意思,字面上 Regression 是衰退的意思,线性衰退?相信理解了这个词 ...
) 线性回归(Linear Regression),自变量 $\textbf x$ 与因变量 $y$ 之间的 ...
原文:http://blog.csdn.net/abcjennifer/article/details/7732417 本文为Maching Learning 栏目补充内容,为上几章中所提到 单参数线性回归、 多参数线性回归和 逻辑回归的总结版。旨在帮助大家更好地理解回归 ...
背景 学习 Linear Regression in Python – Real Python,前面几篇文章分别讲了“regression怎么理解“,”线性回归怎么理解“,现在该是实现的时候了。 线性回归的 Python 实现:基本思路 导入 Python 包: 有哪些包推荐 ...
线性回归, 最简单的机器学习算法, 当你看完这篇文章, 你就会发现, 线性回归是多么的简单. 首先, 什么是线性回归. 简单的说, 就是在坐标系中有很多点, 线性回归的目的就是找到一条线使得这些点都在这条直线上或者直线的周围, 这就是线性回归(Linear Regression). 是不是 ...