梯度的方向与等值面垂直,并且指向函数值提升的方向。 二次收敛是指一个算法用于具有正定二次型函数时,在有限步可达到它的极小点。二次收敛与二阶收敛没有尽然联系,更不是一回事,二次收敛往往具有超线性以上的 ...
: : PM 优化问题在很多领域有着重要的应用。为了日后查阅方便,本文列举常见的无约束优化方法的计算公式。 需要说明的是,本文的大部分内容选自图书 算法笔记 。 一 梯度下降法 梯度下降法 Gradient Descent Method 也叫做最速下降法 Steepest Descent Method ,因为负梯度是函数局部下降最快的方向。 梯度下降 梯度下降法的迭代格式为 x k x k al ...
2017-12-06 10:55 0 2264 推荐指数:
梯度的方向与等值面垂直,并且指向函数值提升的方向。 二次收敛是指一个算法用于具有正定二次型函数时,在有限步可达到它的极小点。二次收敛与二阶收敛没有尽然联系,更不是一回事,二次收敛往往具有超线性以上的 ...
第三章 无约束优化方法 本文是本人研究生课程《最优化方法》的复习笔记,主要是总结课件和相关博客的主要内容用作复习。 3.1 算法理论基础 1. 无约束优化问题的最优性条件 先是一元函数取得极值的条件,高中就学过的 然后是拓展到多元函数后的理论 这三条和前面一元函数的三条 ...
本篇是对自己学习《最优化方法》的一些脉络、思路的记载,也有可能会有一点点思考。 贯穿本学期课程的主要内容实际上是泰勒公式和线性系统的择一性。当然主要是因为线性情况比较好求解,且任何函数取局部都可以线性近似,解决线性问题具有一般意义。 泰勒公式 一般来讲 ,泰勒公式展开 ...
首先先给出三个例子引入fminbnd和fminuc函数求解无约束优化,对这些函数有个初步的了解 求f=2exp(-x)sin(x)在(0,8)上的最大、最小值。 例2 边长3m的正方形铁板,四角减去相等正方形,制成方形无盖水槽。怎样减使水槽容积最大。 解:列出目标函数(加负号,转化 ...
05-无约束优化算法 目录 一、无约束最小化问题 二、下降法 三、梯度下降法 四、最速下降法 五、牛顿法 六、牛顿法收敛性分析 凸优化从入门到放弃完整教程地址:https://www.cnblogs.com/nickchen121/p ...
2.1 求解梯度的两种方法 以$f(x,y)={{x}^{2}}+{{y}^{3}}$为例,很容易得到: $\nabla f=\left[ \begin{aligned}& \frac{\partial f}{\partial x} \\& \frac{\partial f ...
本文讲解的是无约束优化中几个常见的基于梯度的方法,主要有梯度下降与牛顿方法、BFGS 与 L-BFGS 算法。 梯度下降法是基于目标函数梯度的,算法的收敛速度是线性的,并且当问题是病态时或者问题规模较大时,收敛速度尤其慢(几乎不适用); 牛顿法是基于目标函数的二阶导数(Hesse 矩阵 ...
1、二分法(一阶导) 二分法是利用目标函数的一阶导数来连续压缩区间的方法,因此这里除了要求 f 在 [a0,b0] 为单峰函数外,还要去 f(x) 连续可微。 (1)确定初始区间的中点 x(0)=(a0+b0)/2 。然后计算 f(x) 在 x(0) 处的一阶导数 f'(x ...