一、背景 kaggle上有这样一个题目,关于盐份预测的语义分割题目。TGS Salt Identification Challenge | Kaggle https://www.kaggle.com/c/tgs-salt-identification-challenge 二、过程 1、下载数据 ...
参考博客: http: blog.csdn.net jacke article details 以视网膜血管分割的数据集为例: 训练样本: 训练标签: 标签图的制作依据voc数据集中的样例,将被检测的目标改为voc中的一类。 将用ps软件制作的黑底白色标签转化为,目标为 , , 的单通道彩色图片,存储格式为.png。也就是将待分割的目标当做飞机。 转化png的matlab的代码如下: imgnam ...
2017-12-05 21:53 2 3907 推荐指数:
一、背景 kaggle上有这样一个题目,关于盐份预测的语义分割题目。TGS Salt Identification Challenge | Kaggle https://www.kaggle.com/c/tgs-salt-identification-challenge 二、过程 1、下载数据 ...
默认caffe已经编译好了,并且编译好了pycaffe 1 数据准备 首先准备训练和测试数据集,这里准备两类数据,分别放在文件夹0和文件夹1中(之所以使用0和1命名数据类别,是因为方便标注数据类别,直接用文件夹的名字即可)。即训练数据集:/data/train/0、/data/train ...
论文:《Fully Convolutional Networks for Semantic Segmentation》 代码:FCN的Caffe 实现 数据集:PascalVOC 一 数据集制作 PascalVOC数据下载下来后,制作用以图像分割的图像数据集和标签数据集,LMDB ...
参考文章: http://blog.csdn.net/u013059662/article/details/52770198 caffe的安装配置,以及fcn的使用在我前边的文章当中都已经提及到了,这边不会再细讲。在下边的内容当中,我们来看看如何使用别人提供的数据集来训练自己的模型!在这 ...
学习目标检测已经有段时间了,以前都是拿着别人写好的相关代码(api)来用,没有自己好好总结琢磨,想到自己以后工作后估计还是要去用到,这不,再次从最基本的数据和标签准备环节进行。 目标检测领域基本数据类型用的多无非就是VOC、COCO两种,下面就记录一下这两种数据类型的获取。 1. VOC ...
本文主要介绍如何在caffe框架下生成LMDB。其中包含了两个任务的LMDB生成方法,一种是分类,另外一种是检测。 分类任务 第一步 生成train.txt和test.txt文件文件 对于一个监督学习而言,通常具有训练集(train_data文件夹)和测试集(test_data ...
1.数据集的下载与转换 1)我们在mnist数据集上做测试,MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burge在这里下载这四个文件: 2)然后解压生成了以下四个文件 ...
转自https://blog.csdn.net/pingushen2100/article/details/80513043 一.Mask-RCNN数据集 1.1 训练Mask-RCNN用的到的文件有三种:原图像(jpg),mask(png ...