和、差、积、商求导法则 设u=u(x),v=v(x)都可导,则: (Cu)’ = Cu’, C是常数 (u ± v)’ = u’ ± v’ (uv)’ = u’v + uv’ (u/v)’ = (u’v – uv’) / v2 1、2不解释,下面给出3、4的推导 ...
我们已经能够处理很多极限,但是对于一些特殊情况的极限问题,过去的方法显得有些苍白。在先前内容的铺垫下,我们终于可以处理一些不定型的极限问题了,其中包括 型 型,这一切都是通过 洛必达法则 实现的。从此,我们甚至能够判断 的大小 。 不定式 把某些型如 或 的极限成为型不定式。其它常见的不定式还有 例如是一个 型不定式,底数和指数是两股相反的力量,底数想让表达式极限趋近于 ,指数想让表达式趋近于 ...
2017-12-07 17:20 0 4809 推荐指数:
和、差、积、商求导法则 设u=u(x),v=v(x)都可导,则: (Cu)’ = Cu’, C是常数 (u ± v)’ = u’ ± v’ (uv)’ = u’v + uv’ (u/v)’ = (u’v – uv’) / v2 1、2不解释,下面给出3、4的推导 ...
全微分 《数学笔记11——微分和不定积分》中说明了什么是一元函数的微分,类似地,在多元函数中同样存在微分的概念,它有一个确切的名字——全微分。 《多变量微积分笔记1——偏导数》中,曾经提到过近似,对于f = f(x, y, z)的微小改变Δf,是对其所有变量的微小扰动的总量 ...
0x00 概述 今天和大家一起复习的是洛必达法则,这个法则非常重要,在许多问题的解法当中都有出现。虽然时隔多年,许多知识点都已经还给老师了,但是我仍然还记得当年大一的时候,高数老师在讲台上慷慨激昂的样子。 上篇文章当中我们回顾了微分中值定理,今天要说的洛必达法则其实是 ...
定积分是积分的一种,是函数f(x)在区间[a,b]上的积分和的极限。这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式),其它一点关系都没有!一个函数,可以存在不定积分 ...
不是所有被积函数都能解析地写出原函数。对于那些可能写出来的函数,也需要一定的积分技巧才能随心所欲,分部积分正是其中很重要的一种技巧。 基本公式 部分积分演变自积分的乘法法则: 示例1 看起来很难对付,现在尝试用部分积分解决。 令u = lnx,u’ = (lnx ...
微积分第一基本定理 如果F’(x) = f(x),那么: 如果将F用不定积分表示,F =∫f(x)dx,微积分第一基本定理可以看作为是两个不定积分赋予特定的值,再用符号连接起来,计算具体的数值。 这里引入一个新符号: 于是: 示例1 示例 ...
微积分第二基本定理 这里需要注意t与x的关系,它的意思是一个函数能够找到相应的积分方式去表达。如果F’=f,则: 下面是第二基本定理的证明。 证明需要采用画图法,如上图所示,曲线是y=f(x),两个阴影部分的面积分别是G(x)和ΔG(x),其中: 当Δx足够 ...
在区间(a, b)上,f(x)和g(x)都可导、g′(x) ≠ 0、limx → a+f(x) = limx → a+g(x) = 0, $$\lim_{x \rightarrow a^{+}}\f ...