如题所示,SparkSQL /DataFrame /Spark RDD谁快? 按照官方宣传以及大部分人的理解,SparkSQL和DataFrame虽然基于RDD,但是由于对RDD做了优化,所以性能会优于RDD。 之前一直也是这么理解和操作的,直到最近遇到了一个场景,打破了这种不太准确的认识 ...
RDD是什么 RDD resilientdistributed dataset ,指的是一个只读的,可分区的分布式数据集,这个数据集的全部或部分可以缓存在内存中,在多次计算间重用。 RDD内部可以有许多分区 partitions ,每个分区又拥有大量的记录 records 。 五个特征: dependencies:建立RDD的依赖关系,主要rdd之间是宽窄依赖的关系,具有窄依赖关系的rdd可以在同 ...
2017-12-04 15:35 0 14854 推荐指数:
如题所示,SparkSQL /DataFrame /Spark RDD谁快? 按照官方宣传以及大部分人的理解,SparkSQL和DataFrame虽然基于RDD,但是由于对RDD做了优化,所以性能会优于RDD。 之前一直也是这么理解和操作的,直到最近遇到了一个场景,打破了这种不太准确的认识 ...
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是spark第三篇文章,我们继续来看RDD的一些操作。 我们前文说道在spark当中RDD的操作可以分为两种,一种是转化操作(transformation),另一种是行动操作(action)。在转化操作当中,spark ...
Data streaming转为DataFrame,不能直接一步转到DF,需要先转为RDD,然后再转到DF,我们用流式处理数据后,再通过spark sql实时获取我们想要的结果。 1.首先老规矩,创建spark上下文对象,spark SQL和spark Streaming,再创建个socket ...
版权声明:本文为博主原创文章,未经博主允许不得转载。 目录(?)[+] 转载请标明出处:小帆的帆的专栏 RDD 优点: 编译时类型安全 编译时就能检查出类型错误 面向对象的编程风格 直接通过类名点 ...
#构造case class,利用反射机制隐式转换 scala> import spark.implicits._ scala> val rdd= sc.textFile("input/textdata.txt") scala> case class Person(id ...
package cn.spark.study.core.mycode_dataFrame; import java.io.Serializable;import java.util.List; import org.apache.spark.SparkConf;import ...
目标1:掌握Spark SQL原理 目标2:掌握DataFrame/DataSet数据结构和使用方式 目标3:熟练使用Spark SQL完成计算任务 1. Spark SQL概述 1.1. Spark SQL的前世今生 Shark是一个为Spark设计的大规模 ...
RDD底层实现原理 RDD是一个分布式数据集,顾名思义,其数据应该分部存储于多台机器上。事实上,每个RDD的数据都以Block的形式存储于多台机器上,下图是Spark的RDD存储架构图,其中每个Executor会启动一个BlockManagerSlave,并管理一部分Block;而Block ...