原文:信息增益算法

上数据挖掘课的时候算过GINI指数,在寻找降维算法的时候突然看到了信息增益算法,突然发现信息增益算法和课上算的GINI指数很相似,于是就用在这次文本分类实验当中。总的来说信息增益算法是为了求特征t对于分类的贡献大小。贡献大则称信息增益大 贡献小信息增益小。文本分类自然是找那些对分类贡献大的词汇了。。。 在信息增益算法当中关键要求的是条件熵,即固定特征t之后系统的熵,公式如下 代码如下 ...

2018-01-30 08:45 0 1141 推荐指数:

查看详情

信息增益

一:基础知识 1:个体信息量   -long2pi 2:平均信息量(熵)   Info(D)=-Σi=1...n(pilog2pi)   比如我们将一个立方体A抛向空中,记落地时着地的面为f1,f1的取值为{1,2,3,4,5,6},f1的熵entropy(f1)=-(1/6*log ...

Tue Mar 03 07:19:00 CST 2015 0 2740
决策树算法-信息熵-信息增益-信息增益率-GINI系数-转

1. 算法背景介绍 分类树(决策树)是一种十分常用的分类方法。他是一种监管学习,所谓监管学习说白了很简单,就是给定一堆样本,每个样本都有一组属性和一个类别,这些类别是事先确定的,那么通过学习得到一个分类器,这个分类器能够对新出现的对象给出正确的分类。这样的机器学习就被称之为监督学习。分类本质上 ...

Wed Aug 17 02:41:00 CST 2016 1 8642
信息增益信息增益比和GINI例子

这是一个计算决策树中信息增益信息增益比和GINI指标的例子。 相关阅读: Information Gainhttp://www.cs.csi.cuny.edu/~imberman/ai/Entropy%20and%20Information%20Gain.htm ...

Tue Sep 03 01:01:00 CST 2019 0 381
信息增益信息增益比、基尼指数的比较

ID3、C4.5和CART三种经典的决策树模型分别使用了信息增益信息增益比和基尼指数作为选择最优的划分属性的准则来构建决策树。以分类树来说,构建决策树的过程就是从根节点(整个数据集)向下进行节点分裂(划分数据子集)的过程,每次划分需要让分裂后的每个子集内部尽可能包含同一类样本。信息增益信息增益 ...

Sun Jun 07 07:08:00 CST 2020 0 2341
信息增益(information gain)

信息增益是随机森林算法里面的一个很重要的算法,因为我们在选择节点的特征项的时候,就要通过信息增益或者是信息增益率来选择。这里先理解信息增益。 什么是信息增益呢?信息增益(Kullback–Leibler divergence)又称information divergence ...

Tue Jan 15 04:23:00 CST 2013 0 2941
python计算信息增益

离散特征信息增益计算 数据来自《.统计学习方法——李航》5.2.1节中贷款申请样本数据表 利用pandas的value_counts(),快速计算 refference:python详细步骤计算信息增益 ...

Sat May 09 08:28:00 CST 2020 0 1774
信息熵与信息增益

1.信息熵:信息熵就是指不确定性,熵越大,不确定性越大 2.关于信息增益信息增益是针对一个一个的特征而言的,就是看一个特征t,系统有它和没它的时候信息量各是多少,两者的差值就是这个特征给系统带来的信息量,即增益。系统含有特征t的时候信息量很好计算,就是刚才的式子,它表示的是包含 ...

Sun Dec 10 21:29:00 CST 2017 0 1152
决策树算法一:hunt算法信息增益(ID3)

决策树入门 决策树是分类算法中最重要的算法,重点 决策树算法在电信营业中怎么工作? 这个工人也是流失的,在外网转移比处虽然没有特征来判断,但是在此节点处流失率有三个分支概率更大 为什么叫决策树?  因为树的叶子节点是我们最终预判的结果。决策树如何来?  根据训练样本建立 ...

Thu Apr 22 17:28:00 CST 2021 0 292
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM