0.卷积层的理解 实际上卷积核(convolution kernel)不是真的卷积,而是类似一个输入和输出之间的线性表达式. 为什么叫做卷积呢, 因为两个次序上相邻的NxN卷积核有N-1的重叠. 本质上卷积核是一个线性过滤式, 比如输入时4x4的小宏块, 卷积核过滤的结果相当于一次线性 ...
先定义几个参数 输入图片大小W W Filter大小F F 步长S padding的像素数P 于是我们可以得出 N W F P S 卷积核:一个卷积核只有三维,卷积核的厚度对应的被卷积特征的通道数,卷积核的个数对应卷积后的输出特征的通道数。 ...
2017-12-01 18:42 0 4354 推荐指数:
0.卷积层的理解 实际上卷积核(convolution kernel)不是真的卷积,而是类似一个输入和输出之间的线性表达式. 为什么叫做卷积呢, 因为两个次序上相邻的NxN卷积核有N-1的重叠. 本质上卷积核是一个线性过滤式, 比如输入时4x4的小宏块, 卷积核过滤的结果相当于一次线性 ...
滤波器的大小选择 大部分卷积神经网络都会采用逐层递增(1⇒ 3 ⇒ 5 ⇒ 7)的方式。 每经过一次池化层,卷积层过滤器的深度都会乘以 2; 卷积神经网络中卷积核越小越好吗? 多个小的卷积核叠加使用要远比一个大的卷积核单独使用效果要好的多,在连通性不变的情况下,大大降低了参数 ...
先讲一下是怎么卷积的。一般输入的是RGB颜色空间的图片,即有三个通道。可以理解为这三个通道的每个对应的数值组合在一起表示了这一张图片。 卷积操作过程:(通道数变化的原理) 先从一张示意图说起,卷积基础概念和操作步骤就不啰嗦了,只讲这张图,大意就是,有in-channel ...
卷积核的参数量和计算量 卷积计算量 通常只看乘法计算量: 标准卷积方式 C代表通道数,Ci输入通道数,C0为输出通道数。H*W为长宽 如下图;当前特征图Ci * H * W ,把特征图复制C0个,分别与3*3*Ci的卷积核进行卷积,输出特征图大小C0 * H * W ...
每个卷积核具有长、宽、深三个维度。 卷积核的长、宽都是人为指定的,长X宽也被称为卷积核的尺寸,常用的尺寸为3X3,5X5等;卷积核的深度与当前图像的深度(feather map的张数)相同,所以指定卷积核时,只需指定其长和宽两个参数。 例如,在原始图像层 (输入层),如果图像是灰度图像 ...
以一张图片作为开始吧: 这里的输入数据是大小为(8×8)的彩色图片,其中每一个都称之为一个feature map,这里共有3个。所以如果是灰度图,则只有一个feature map。 进行卷积操作时,需要指定卷积核的大小,图中卷积核的大小为3,多出来的一维3不需要在代码中指定,它会 ...
1.原理 对于1*1的卷积核来说,实际上就是实现不同通道数据之间的计算,由于卷积窗口为1*1,那么他不会对同一通道上相邻的数据进行改变,而是将不同通道之间的数据进行相加. 输入和输出具有相同的高和宽。输出中的每个元素来自输入中在高和宽上相同位置的元素在不同通道之间的按权重累加 ...
卷积是图像处理中一个操作,是kernel在图像的每个像素上的操作。Kernel本质上一个固定大小的矩阵数组,其中心点称为锚点(anchor point)。把kernel放到像素数组之上,求锚点周围覆盖的像素乘积之和(包括锚点),用来替换锚点覆盖下像素点值称为卷积处理。数学表达 ...