转载请注明出处:http://www.cnblogs.com/bethansy/p/6953625.html LPA算法的思路: 首先每个节点有一个自己特有的标签,节点会选择自己邻居中出现次数最多的标签,如果每个标签出现次数一样多,那么就随机选择一个标签替换自己原始的标签 ...
众所周知,机器学习可以大体分为三大类:监督学习 非监督学习和半监督学习。监督学习可以认为是我们有非常多的labeled标注数据来train一个模型,期待这个模型能学习到数据的分布,以期对未来没有见到的样本做预测。那这个性能的源头 训练数据,就显得非常感觉。你必须有足够的训练数据,以覆盖真正现实数据中的样本分布才可以,这样学习到的模型才有意义。那非监督学习就是没有任何的labeled数据,就是平时 ...
2017-11-28 15:20 0 11377 推荐指数:
转载请注明出处:http://www.cnblogs.com/bethansy/p/6953625.html LPA算法的思路: 首先每个节点有一个自己特有的标签,节点会选择自己邻居中出现次数最多的标签,如果每个标签出现次数一样多,那么就随机选择一个标签替换自己原始的标签 ...
0. 社区划分简介 0x1:非重叠社区划分方法 在一个网络里面,每一个样本只能是属于一个社区的,那么这样的问题就称为非重叠社区划分。 在非重叠社区划分算法里面,有很多的方法: 1. 基于模块度优化的社区划分 基本思想是将社区划分问题转换成了模块度函数的优化,而模块度是对社区划分算法 ...
虽然学深度学习有一段时间了,但是对于一些算法的具体实现还是模糊不清,用了很久也不是很了解。因此特意先对深度学习中的相关基础概念做一下总结。先看看前向传播算法(Forward propagation)与反向传播算法(Back propagation)。 1.前向传播 ...
1. 误差反向传播算法(Back Propagation): ①将训练集数据输入到神经网络的输入层,经过隐藏层,最后达到输出层并输出结果,这就是前向传播过程。②由于神经网络的输出结果与实际结果有误差,则计算估计值与实际值之间的误差,并将该误差从输出层向隐藏层反向传播,直至传播到输入层;③在反向 ...
TensorFlow Playground http://playground.tensorflow.org 帮助更好的理解,游乐场Playground可以实现可视化训练过程的工具 TensorFlow Playground的左侧提供了不同的数据集来测试神经网络。默认的数据为左上角 ...
1.LPA算法简介 标签传播算法(Label Propagation Algorithm,LPA)是由Zhu等人于2002年提出,它是一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。 LPA算法思路简单清晰,其基本过程 ...
参考文献:http://blog.csdn.net/cleverlzc/article/details/39494957Gephi 是一款网络分析领域的可视化处理软件,可以用于数据分析,链接分析,社交网络分析等。标签传播算法LPA(Label Propagation Algorithm)最早是针对 ...
@ 目录 一、简介 二、算法流程 三、BP 算法与Bethe 聚类图 四、BP 算法与团树传播算法的联系 一、简介 二、算法流程 节点势函数初始化; 所有消息初始化为 1; 选取所有边,迭代更新 ...