2020-04-11 ...
基本思路: 每个评论取前 个单词。然后生成词汇表,利用词汇index标注评论 对 每条评论的前 个单词编号而已 ,然后使用LSTM做正负评论检测。 代码解读见 评论 embedding层本质上是word vec 在进行数据降维,但是不是所有的LSTM都需要这个,比如在图像检测mnist时候,就没有这层 负面的示例评论: 正面的: pad后和category后的数据示例: 其中,MAX DOCUME ...
2017-11-27 14:28 7 3831 推荐指数:
2020-04-11 ...
朴素贝叶斯最著名的一个应用:电子邮件垃圾过滤。 准备数据:切分文本 采用正则表达式和split()函数进行,和Java语言的字符串分割基本类似,略去不讲 第一个函数传入一个字符串,将其转化成字符串列表,并且去掉少于两个字符的字符串,并将所有字符串转换为小写 第二个 ...
之前在朴素贝叶斯算法原理小结这篇文章中,对朴素贝叶斯分类算法的原理做了一个总结。这里我们就从实战的角度来看朴素贝叶斯类库。重点讲述scikit-learn 朴素贝叶斯类库的使用要点和参数选择。 1. scikit-learn 朴素贝叶斯类库概述 朴素贝叶斯是一类比较简单的算法 ...
所以我们的流程如图所示。将正负样本按 1:1 的比例转换为图像。将 ImageNet 中训练好的图像分类模型作为迁移学习的输入。在 GPU 集群中进行训练。我们同时训练了标准模型和压缩模型,对应不同的 ...
贝叶斯算法可以用来做拼写检查、文本分类、垃圾邮件过滤等工作,前面我们用贝叶斯做了文本分类,这次用它来做拼写检查,参考:How to Write a Spelling Corrector 拼写检查器的原理 给定一个单词, 我们的任务是选择和它最相似的拼写正确的单词. 对应的贝叶斯问题 ...
条件概率 •设A,B为任意两个事件,若P(A)>0,我们称在已知事件A发生的条件下,事件B发生的概率为条件概率,记为P(B|A),并定义 乘法公式 •如果P(A)>0 ...
朴素贝叶斯模型 朴素贝叶斯的应用 朴素贝叶斯模型是文本领域永恒的经典,广泛应用在各类文本分析的任务上。只要遇到了文本分类问题,第一个需要想到的方法就是朴素贝叶斯,它在文本分类任务上是一个非常靠谱的基准(baseline)。 比如对于垃圾邮件的分类,朴素贝叶斯 ...
一:训练模型、实现预测函数 二:实现K折交叉验证法---k=5 ...