假设一事件在任何长为t的时间内出现的次数v(t)服从参数为it的泊松分布(此处i为单位时间内事件发生的平均次数),则相邻两次事件的时间间隔T服从参数为i的指数分布。 解释: 直接从泊松分布解释比较困难。因为泊松分布是二项分布在一定条件下的近似,所以我们看二项分布。 设事件发生概率为p ...
概率分布有两种类型:离散 discrete 概率分布和连续 continuous 概率分布。 离散概率分布也称为概率质量函数 probability mass function 。离散概率分布的例子有伯努利分布 Bernoulli distribution 二项分布 binomial distribution 泊松分布 Poisson distribution 和几何分布 geometric d ...
2017-11-26 11:42 0 33407 推荐指数:
假设一事件在任何长为t的时间内出现的次数v(t)服从参数为it的泊松分布(此处i为单位时间内事件发生的平均次数),则相邻两次事件的时间间隔T服从参数为i的指数分布。 解释: 直接从泊松分布解释比较困难。因为泊松分布是二项分布在一定条件下的近似,所以我们看二项分布。 设事件发生概率为p ...
一、先摆出泊松分布表达式: \[P(x=k;\lambda) = \frac{\lambda^k}{k!}e^{-\lambda} \] 泊松分布的意义: 首先,泊松分布的描述对象是“离散随机变量”; 泊松分布是描述特定时间或者空间中事件的分布情况。泊松分布的参数λ是单位 ...
一、泊松分布 日常生活中,大量事件是有固定频率的。 某医院平均每小时出生3个婴儿 某公司平均每10分钟接到1个电话 某超市平均每天销售4包xx牌奶粉 某网站平均每分钟有2次访问 它们的特点就是,我们可以预估这些事件的总数,但是没法知道 ...
指数分布与泊松分布 一、总结 一句话总结: 泊松分布:$$P(X = k) = e^{-\lambda}\displaystyle\frac{\lambda^k}{k!}, \ k = 0, 1, 2,..., $$ 指数分布:$$f(x) = \begin{cases} \lambda ...
开始介绍之前还是老样子先吐槽一下教科书不说人话,喜欢端着,真是耽误了一群数学天才。 伯努利分布 伯努利分布很好理解,常见的例子就是抛硬币,假设硬币正面朝上的概率是 p,所以伯努利分布的概率质量函数(probability mass function,简写作pmf)是: 注意 ...
(源自:http://www.yelinsky.com/notes/topic/32) 二项分布有两个参数,一个 n 表示试验次数,一个 p 表示一次试验成功概率。现在考虑一列二项分布,其中试验次数 n 无限增加,而 p 是 n 的函数。 1.如果 np 存在有限极限 λ,则这列二项分布就趋于 ...
泊松分布的定义 设随机变量 X 所有可能取的值为 0 , 1, 2, ... , 且取各个值的概率为: \[P(X = k) = e^{-\lambda}\displaystyle\frac{\lambda^k}{k!}, \ k ...
定义 二项分布:P(X=k)=Cnkpk(1-p)(n-k) 抛硬币,假设硬币不平整,抛出正面的概率为p,那么在n次抛硬币的实验中,出现k次正面的概率 泊松分布: p(X=k)=λke-λ/k! 公共汽车站在单位时间内,来乘车的乘客数为k 的概率。假定平均到站乘客数为λ 二项分布 ...